Skip to main content
Log in

A descent cautious BFGS method for computing US-eigenvalues of symmetric complex tensors

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Unitary symmetric eigenvalues (US-eigenvalues) of symmetric complex tensors and unitary eigenvalues (U-eigenvalues) for non-symmetric complex tensors are very important because of their background of quantum entanglement. US-eigenvalue is a generalization of Z-eigenvalue from the real case to the complex case, which is closely related to the best complex rank-one approximations to higher-order tensors. The problem of finding US-eigenpairs can be converted to an unconstrained nonlinear optimization problem with complex variables, their complex conjugate variables and real variables. However, optimization methods often need a first- or second-order derivative of the objective function, and cannot be applied to real valued functions of complex variables because they are not necessarily analytic in their argument. In this paper, we first establish the first-order complex Taylor series and Wirtinger calculus of complex gradient of real-valued functions with complex variables, their complex conjugate variables and real variables. Based on this theory, we propose a norm descent cautious BFGS method for computing US-eigenpairs of a symmetric complex tensor. Under appropriate conditions, global convergence and superlinear convergence of the proposed method are established. As an application, we give a method to compute U-eigenpairs for a non-symmetric complex tensor by finding the US-eigenpairs of its symmetric embedding. The numerical examples are presented to support the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qi, L.Q.: Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  2. Ni, G.Y., Qi, L.Q., Bai, M.R.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM. J. Matrix Anal. Appl. 35(1), 73–87 (2014)

    Article  MathSciNet  Google Scholar 

  3. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceeding of the IEEE international workshop on computational advances in multisensor adaptive processing, pp. 129–132 (2005)

  4. Cartwright, D., Sturmfels, B.: The number of eigenvalues of a tensor. Linear Algebra Appl. 438(2), 942–952 (2013)

    Article  MathSciNet  Google Scholar 

  5. Hu, S.L., Huang, Z.H., Qi, L.Q.: Finding the extreme Z-eigenvalues of tensors via a sequential semidefinite programming method. Numer. Linear Algebra Appl. 20(6), 972–984 (2013)

    Article  MathSciNet  Google Scholar 

  6. Ling, C., He, H.J., Qi, L.Q.: Higher-degree eigenvalue complementarity problems for tensors. Comput. Optim. Appl. 64(1), 149–176 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ni, Q., Qi, L.Q., Wang, F.: An eigenvalue method for the positive definiteness identification problem. IEEE Trans. Autom. Control 53(5), 1096–1107 (2008)

    Article  Google Scholar 

  8. Zeng, M., Ni, Q.: Quasi-Newton method for computing Z-eigenpairs of a symmetric tensor. Pac. J. Optim. 11, 279–290 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Qi, L.Q., Wang, F., Wang, Y.J.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118(2), 301–316 (2009)

    Article  MathSciNet  Google Scholar 

  10. Chen, Z., Lu, L.: A tensor singular and its symmetric embedding eigenvalues. J. Comput. Appl. Math. 250(10), 217–228 (2013)

    Article  MathSciNet  Google Scholar 

  11. Qi, L.Q., Wang, Y.J., Wu, E.X.: D-eigenvalues of diffusion kurtosis tensors. J. Comput. Appl. Math. 221(1), 150–157 (2008)

    Article  MathSciNet  Google Scholar 

  12. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    Article  MathSciNet  Google Scholar 

  13. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68(4), 4343–4349 (2003)

    Article  Google Scholar 

  14. Goyeneche, D., Bielawski, J., Zyczkowski, K.: Multipartite entanglement in heterogeneous systems. Phys. Rev. A 94(1), 012346 (2016)

    Article  Google Scholar 

  15. Hilling, J.J., Sudbery, A.: The geometric measure of multipartite entanglement and the singular values of a hypermatrix. J. Math. Phys. 51(7), 062312 (2010)

    Article  MathSciNet  Google Scholar 

  16. Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Gr. 14(6), 1635–1642 (2008)

    Article  Google Scholar 

  17. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)

    Article  MathSciNet  Google Scholar 

  18. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)

    Article  MathSciNet  Google Scholar 

  19. Cui, C.F., Dai, Y.H., Nie, J.W.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35(4), 1582–1601 (2014)

    Article  MathSciNet  Google Scholar 

  20. Hu, S.L., Qi, L.Q., Zhang, G.: Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys. Rev. A. 93(1), 012304 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ni, G.Y., Bai, M.R.: Spherical optimization with complex variables for computing US-eigenpairs. Comput. Optim. Appl. 65(3), 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  22. Che, M.L., Qi, L.Q., Wei, Y.M.: Iterative algorithms for computing US-and U-eigenpairs of complex tensors. J. Comput. Appl. Math. 317, 547–564 (2017)

    Article  MathSciNet  Google Scholar 

  23. Sorber, L., Barel, M.V., Lathauwer, L.D.: Unconstraint optimization of real functions in complex variables. SIAM J. Optim. 22, 879–898 (2012)

    Article  MathSciNet  Google Scholar 

  24. Kreutz-Delgado, K.: The complex gradient operator and the CR-Calculus. Mathematics (2009)

  25. Remmert, R.: Theory of Complex Functions. Springer, New York (1991)

    Book  Google Scholar 

  26. Gu, G.Z., Li, D.H., Qi, L.Q., Zhou, S.Z.: Descent directions of quasi-Newton methods for symmetric nonlinear equations. SIAM J. Numer. Anal. 40(5), 1763–1774 (2002)

    Article  MathSciNet  Google Scholar 

  27. Li, D.H., Fukushima, M.: On the global convergence of the BFGS method for nonconvex unconstrained optimization problems. SIAM J. Numer. Anal. 11, 1054–1064 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Bader, B.W., Kolda, T.G.: MATLAB tensor toolbox version 2.6. http://www.sandia.gov/~tgkolda/TensorToolbox/ (2015)

  29. Li, D.H., Fukushima, M.: A global and superlinear convergent Gauss–Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1), 152–172 (2000)

    Article  Google Scholar 

  30. Byrd, R.H., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26(3), 727–739 (1999)

    Article  MathSciNet  Google Scholar 

  31. Nie, J.W., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35(3), 1155–1179 (2014)

    Article  MathSciNet  Google Scholar 

  32. Hayashi, M., Markham, D., Murao, M., Owari, M., Virmani, S.: The geometric measure of entanglement for a symmetric pure state with non-negative amplitudes. J. Math. Phys. 50(12), 675 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minru Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (No. 11571098).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, M., Zhao, J. & Zhang, Z. A descent cautious BFGS method for computing US-eigenvalues of symmetric complex tensors. J Glob Optim 76, 889–911 (2020). https://doi.org/10.1007/s10898-019-00843-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00843-5

Keywords

Navigation