Skip to main content

Advertisement

Log in

Single and Multi-metal Oxide Nanoparticles Induced Cytotoxicity and ROS Generation in Human Breast Cancer (MCF-7) Cells

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present study was designed to examine the cytotoxic activity of synthesized single metal oxide nanoparticles such as copper oxide (CuO), iron oxide (γFe2O3) and multi-metal oxide zinc, iron and copper oxide (CuZnFe2O3) in human breast cancer (MCF-7) cells. These single and multi-metal oxide nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cytotoxic potential of these nanoparticles was assessed by MTT and NRU assays. Further, the morphological alterations, reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were also studied. The novelty of the present work express that the MTT and NRU assays revealed a concentration dependent decrease in the viability of MCF-7 cells. The percent cell viability was recorded as 82%, 81%, and 79% in CuFeZn NPs, 81%, 80% and 70% in γFe2O3NPs, 54%, 43% and 27% in CuONPs exposed MCF-7 cells for 24 h at doses 25, 50, 100 μg/ml, respectively by MTT assay. The MTT results was also justified by NRU assay. An increase in ROS generation was observed as 21% and 35% in CuOFeZnNPs, 41% and 61% in γFe2O3NPs and 54% and 89% in CuONPs and the decrease in MMP level was observed as 14% and 24% in CuOFeZn NPs, 37% and 46% in γFe2O3NPs and 52% and 58% in CuONPs at 25 and 50 µg/ml, respectively related to control. Together, these results suggest that the loss of MMP and increase in ROS level could be important mechanism of single and multi-metal oxide nanoparticles induced cytotoxicity in human breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.P. Andres, R.S. Averback, W.L. Brown et al., Research opportunities on clusters and cluster-assembled materials—a Department of Energy, Council on Materials Science Panel Report. J Mater Res 4(3), 704–736 (1989)

    CAS  Google Scholar 

  2. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2117 (2001)

    CAS  PubMed  Google Scholar 

  3. R.P. Andres, T. Bein, M. Dorogi et al., Coulomb staircase at room temperature in a self-assembled molecular nanostructure. Science 272, 1323–1325 (1996)

    CAS  PubMed  Google Scholar 

  4. C.B. Murray, C.R. Kagan, M.G. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995)

    CAS  Google Scholar 

  5. R. Cai, Y. Du, D. Yang, G. Jia, B. Zhu, B. Chen, Y. Lyu, K. Chen, D. Chen, W. Chen, L. Yang, Y. Zhao, Z. Chen, W. Tan, Free-standing 2D nanorafts by assembly of 1D nanorods for biomolecule sensing. Nanoscale 11, 12169–12176 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. M.J. Mayo, R.W. Siegel, A. Narayanasamy et al., Mechanical properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 5, 1073–1082 (1990)

    CAS  Google Scholar 

  7. M. Guermazi, H.J. Höfler, H. Hahn et al., Temperature dependence of the hardness of nanocrystalline titanium dioxide. J. Am. Ceram. Soc. 74(10), 2672–2674 (1991)

    CAS  Google Scholar 

  8. Y. Mao, T.J. Park, F. Zhang et al., Environmentally friendly methodologies of nanostructure synthesis. Small 3, 1122–1139 (2007)

    CAS  PubMed  Google Scholar 

  9. Y. Yin, A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005)

    CAS  PubMed  Google Scholar 

  10. F.X. Red, K.S. Cho, C.B. Murray et al., Three-dimensional binary super lattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003)

    Google Scholar 

  11. S. Kinge, M. Crego-Calama, D.N. Reinhoudt, Self-assembling nanoparticles at surfaces and interfaces. Chem. Phys. Chem. 9, 20–42 (2008)

    CAS  PubMed  Google Scholar 

  12. K.E. Shopsowitz, H. Qi, W.Y. Hamad et al., Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422–425 (2010)

    CAS  PubMed  Google Scholar 

  13. S. Sun, C.B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85, 4325–4330 (1999)

    CAS  Google Scholar 

  14. V.N. Rao, N.L. Reddy, M.M. Kumari, P. Ravi, M. Sathish, K.M. Kuruvilla, V. Preethi, K.R. Reddy, N.P. Shettie, T.M. Aminabhavi, M.V. Shankara, Photocatalytic recovery of H2 from H2S containing wastewater: Surface and interface control of photo-excitons in Cu2S@TiO2 core-shell nanostructures. Appl. Catal. B Environ. 254, 174–185 (2019)

    Google Scholar 

  15. P.S. Basavarajappa, B.N.H. Seethya, N. Ganganagappa, K.B. Eshwaraswamy, R.R. Kakarla, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. Chem. Select. 3, 9025–9033 (2018)

    CAS  Google Scholar 

  16. N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosensors Bioelectron. 141, 111417 (2018)

    Google Scholar 

  17. C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, Yoo K, Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment. Electrochim. Acta 317, 416–426 (2019)

    CAS  Google Scholar 

  18. N.P. Shetti, S.J. Malode, D.S. Nayak, G.B. Bagihalli, S.S. Kalanur, R.S. Malladi, C.V. Reddy, T.M. Aminabhavi, K.R. Reddy, Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl. Surf. Sci. 496, 143656 (2019)

    CAS  Google Scholar 

  19. N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Nano structured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B Biointerfaces 178, 385–394 (2019)

    CAS  PubMed  Google Scholar 

  20. N.R. Reddy, U. Bhargav, M.M. Kumari, K.K. Cheralathan, M.V. Shankar, K.R. Reddy, T.A. Saleh, T.M. Aminabhavi, Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures. J. Environ. Manag. 254, 109747 (2020)

    CAS  Google Scholar 

  21. K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scr. Mater. 58(11), 1010–1013 (2008)

    CAS  Google Scholar 

  22. C.V. Reddya, I.N. Reddy, B. Akkinepally, K.R. Reddy, S. Jaesool, Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nano structure photoanode. J. Alloys Compd. 814, 152349 (2020)

    Google Scholar 

  23. C.V. Reddy, I.N. Reddy, V.V.N. Harish, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere 239, 124766 (2020)

    CAS  PubMed  Google Scholar 

  24. S.B. Patil, P.S. Basavarajappa, N. Ganganagappa, M.S. Jyothi, A.V. Raghu, K.R. Reddy, Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy 44(26), 13022–13039 (2019)

    CAS  Google Scholar 

  25. R. Gholami, R. Ansari, Grain size and nanoscale effects on the nonlinear pull-in instability and vibrations of electrostatic actuators made of nanocrystalline material. Mater. Res. Express 5(1), 015012 (2018)

    Google Scholar 

  26. N. Xia, N. Li, W. Rao, J. Yu, Q. Wu, L. Tan, H. Li, L. Gou, P. Liang, L. Li, X. Meng, Multifunctional and flexible ZrO2-coated EGaIn nanoparticles for photothermal therapy. Nanoscale 11, 10183–10189 (2019)

    CAS  PubMed  Google Scholar 

  27. P. Sharma, S. Pant, V. Dave, K. Tak, V. Sadhu, K.R. Reddy, Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J. Microbiol. Methods 160, 107–116 (2019)

    CAS  PubMed  Google Scholar 

  28. R. Boppana, S.Y. Raut, G.K. Mohan, B. Sa, S. Mutalik, K.R. Reddy, K.K. Das, M.S. Biradar, R.V. Kulkarni, Novel pH-sensitive interpenetrated network polyspheres of polyacrylamide-g-locust bean gum and sodium alginate for intestinal targeting of ketoprofen: In vitro and in vivo evaluation. Colloids Surf. B Biointerfaces 180, 362–370 (2019)

    CAS  PubMed  Google Scholar 

  29. M. Sharma, A. Deohra, K.R. Reddy, V. Sadhu, Biocompatible in-situ gelling polymer hydrogels for treating ocular infection, in Methods in Microbiology; Nanotechnology (Elsevier, Amsterdam, 2019), pp. 93–114

  30. A. Misra, S. Jain, D. Kishore, V. Dave, K.R. Reddy, V. Sadhu, J. Dwivedi, S. Sharma, A facile one pot synthesis of novel pyrimidine derivatives of 1,5-benzodiazepines via domino reaction and their antibacterial evaluation. J. Microbiol. Methods 163, 105648 (2019)

    PubMed  Google Scholar 

  31. S.B. Patil, S.Z. Inamdar, K.K. Das, K.G. Akamanchi, A.V. Patil, A.C. Inamadar, K.R. Reddy, A.V. Raghu, R.V. Kulkarni, Tailor-made electrically-responsive poly (acrylamide)-graft-pullulan copolymer based transdermal drug delivery systems: synthesis, characterization, in-vitro and ex-vivo evaluation. J. Drug Deliv. Sci. Technol. 56(A), 101525 (2020)

    CAS  Google Scholar 

  32. V. Dave, K. Tak, A. Sohgaura, A. Gupta, V. Sadhu, K.R. Reddy, Lipid-polymer hybrid nanoparticles: synthesis strategies and biomedical applications. J. Microbiol. Methods 160, 130–142 (2019)

    CAS  PubMed  Google Scholar 

  33. M. Moradi, M. Abdolhosseini, A. Zarrabi, B. Johari, A review on application of nano-structures and nano-objects with high potential for managing different aspects of bone malignancies. Nano-Struct. Nano-Obj. 19, 100348 (2019)

    CAS  Google Scholar 

  34. S. Gulla, D. Lomada, V.V.S.S. Srikanth, M.V.K. Shankar, K.R. Reddy, S. Soni, M.C., Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications, in Methods in Microbiology, vol. 46 (Academic Press, New York, 2019), pp, 255–293

  35. S. Stanki, S. Suman, F. Haque et al., Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 14, 73 (2016)

    Google Scholar 

  36. V.S. Shanthala, S.N.S. Devi, M.V. Murugendrappa, Synthesis, characterization and DC conductivity studies of polypyrrole/copper zinc iron oxide nanocomposites. J. Asian Ceram. Soc. 5, 227–234 (2017)

    Google Scholar 

  37. R. Magaye, J. Zhao, L. Bowman et al., Genotoxicity and carcinogenicity of cobalt-nickel- and copper-based nanoparticles. Exp. Ther. Med. 4, 551–561 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. G. Sudlow, D.J. Birkett, D.N. Wade, The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 11, 824–832 (1975)

    CAS  PubMed  Google Scholar 

  39. K. Aidas, J.M.H. Olsen, J. Kongsted et al., Photoabsorption of acridine yellow and proflavin bound to human serum albumin studied by means of quantum mechanics/molecular dynamics. J. Phys. Chem. 117, 2069–2080 (2013)

    CAS  Google Scholar 

  40. F. Samari, M. Shamsipur, B. Hemmateenejad, Investigation of the interaction between amodiaquine and human serum albumin by fluoresence spectroscopy and molecular modeling. Eur. J. Med. Chem. 54, 255–263 (2012)

    CAS  PubMed  Google Scholar 

  41. M.A. Siddiqui, G. Singh, M.P. Kashyap et al., Influence of cytotoxic doses of 4-hydroxynonenal on selected neurotransmitter receptors in PC-12 cells. Toxicol. In Vitro 22, 1681–1688 (2008)

    CAS  PubMed  Google Scholar 

  42. M.A. Siddiqui, M.P. Kashyap, V. Kumar et al., Protective potential of trans-resveratrol against 4-hydroxynonenal induced damage in PC12 cells. Toxicol. In Vitro 24, 1592–1598 (2010)

    CAS  PubMed  Google Scholar 

  43. M.A. Siddiqui, Q. Saquib, M. Ahamed et al., Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929). Colloids Surf. B 125, 73–81 (2015)

    CAS  Google Scholar 

  44. M.A. Siddiqui, J. Ahmad, N.N. Farshori et al., Rotenone-induced oxidative stress and apoptosis in human liver HepG2 cells. Mol. Cell. Biochem. 384(1–2), 59–69 (2013)

    CAS  PubMed  Google Scholar 

  45. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  46. G. Dharanivasan, S. Sithanantham, M. Kannan et al., Metal oxide nanoparticles assisted controlled release of synthetic insect attractant for effective and sustainable trapping of fruit flies. J. Clust. Sci. 28(4), 2167–2183 (2017)

    CAS  Google Scholar 

  47. M.A. Gatoo, S. Naseem, M.Y. Arfat et al., Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed. Res. Int. 498420, 1–8 (2014)

    Google Scholar 

  48. H. Bahadar, F. Maqbool, K. Niaz et al., Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J 20(1), 1 (2016)

    PubMed  PubMed Central  Google Scholar 

  49. Y. Zhang, Y. Bai, J. Jia et al., Perturbation of physiological systems by nanoparticles. Chem. Soc. Rev. 43(10), 3762–3809 (2014)

    CAS  PubMed  Google Scholar 

  50. C. Shen, S.A. James, M.D. DeJonge et al., Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle–exposed human immune cells. Toxicol. Sci. 136(1), 120–130 (2013)

    CAS  PubMed  Google Scholar 

  51. S.K. Sohaebuddin, P.T. Thevenot, D. Baker et al., Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre Toxicol. 7(1), 22 (2010)

    PubMed  PubMed Central  Google Scholar 

  52. I. Pujalté, I. Passagne, B. Brouillaud et al., Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part. Fibre Toxicol. 8(1), 10 (2011)

    PubMed  PubMed Central  Google Scholar 

  53. P. Khanna, C. Ong, B.H. Bay et al., Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5(3), 1163–1180 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. N. Li, C. Sioutas, A. Cho et al., Ultrafine particulate pollutants induce oxidative stress and mitochrondrial damage. Environ. Health. Perspect. 111, 455–460 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. P.P. Fu, Q. Xia, H.M. Hwang et al., Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 22(1), 64–75 (2014)

    CAS  PubMed  Google Scholar 

  56. G. Kroemer, L. Galluzzi, C. Brenner, Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007)

    CAS  PubMed  Google Scholar 

  57. P. Vandenabeele, L. Galluzzi, T.V. Berghe et al., Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700–714 (2010)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Wahab.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research Involving Human and Animal Rights

Also here declare that we haven’t used any human or animal object except cell lines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, M.A., Wahab, R., Ahmad, J. et al. Single and Multi-metal Oxide Nanoparticles Induced Cytotoxicity and ROS Generation in Human Breast Cancer (MCF-7) Cells. J Inorg Organomet Polym 30, 4106–4116 (2020). https://doi.org/10.1007/s10904-020-01564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01564-z

Keywords

Navigation