Skip to main content

Advertisement

Log in

A Comprehensive Study on Methods and Materials for Photocatalytic Water Splitting and Hydrogen Production as a Renewable Energy Resource

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

High energy consumption, rapid increase in its demand and depletion of energy resources in the world are compelling the researchers for exploration of renewable energy resources in order to attain sustain development of nations. Many existing resources are being used to fulfil the current requirements. But these existing resources are also causing serious environmental pollution which is a very serious concern of the current era. Therefore, there is an immense need to think and produce environment friendly and sustainable renewable energy resources. Water, being abundant on Earth, is one of the most suitable sources of hydrogen energy. In this work the splitting of water and hydrogen production by different techniques, specially the promising photocatalysis technique, are discussed in detail. The water splitting and hydrogen production depend upon the properties of photocatalysts which rose from the nature, composition and other factors of photocatalysts. Therefore, this study discussed different materials like metal oxides, metal sulphides, nanocomposites, etc. which are used for photocatalytic hydrogen production. In addition, the pros and cons of the utilized materials are discussed to select the best class of materials for hydrogen production from water splitting. This review will help the beginners of this field to understand the basic mechanisms of different hydrogen production techniques along with their advantages and disadvantages. However, it will also help the field experts and industrialists to select the best class of materials for hydrogen evolution from water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. T. Hisatomi, K. Domen, Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11–35 (2017)

    PubMed  CAS  Google Scholar 

  2. I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1(1), 0003 (2017)

    CAS  Google Scholar 

  3. A. Ferreira et al., Economic overview of the use and production of photovoltaic solar energy in brazil. Renew. Sustain. Energy Rev. 81, 181–191 (2018)

    Google Scholar 

  4. M.I. Jamesh, Y. Kuang, X. Sun, Constructing earth-abundant 3D nanoarrays for efficient overall water splitting—a review. ChemCatChem 11(6), 1550–1575 (2019)

    CAS  Google Scholar 

  5. S.J. Davis, K. Caldeira, Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. 107(12), 5687–5692 (2010)

    PubMed  CAS  Google Scholar 

  6. C. Acar, I. Dincer, C. Zamfirescu, A review on selected heterogeneous photocatalysts for hydrogen production. Int. J. Energy Res. 38(15), 1903–1920 (2014)

    CAS  Google Scholar 

  7. P.S. Georgilakis, Technical challenges associated with the integration of wind power into power systems. Renew. Sustain. Energy Rev. 12(3), 852–863 (2008)

    Google Scholar 

  8. F. Díaz-González et al., A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16(4), 2154–2171 (2012)

    Google Scholar 

  9. A.L. Hamilton, G.W. Characklis, P.M. Reed, Managing financial risk tradeoffs for hydropower generation using snowpack-based index contracts. 2020

  10. O. Edenhofer et al., Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  11. O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39, 748–764 (2014)

    Google Scholar 

  12. E. Barbier, Geothermal energy technology and current status: an overview. Renew. Sustain. Energy Rev. 6(1–2), 3–65 (2002)

    Google Scholar 

  13. I.B. Fridleifsson, Geothermal energy for the benefit of the people. Renew. Sustain. Energy Rev. 5(3), 299–312 (2001)

    CAS  Google Scholar 

  14. J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004)

    PubMed  CAS  Google Scholar 

  15. I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 40(34), 11094–11111 (2015)

    CAS  Google Scholar 

  16. Y. Chen et al., Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed. 59(3), 1295–1301 (2020)

    CAS  Google Scholar 

  17. R. Chen et al., Integration of lanthanide–transition-metal clusters onto cds surfaces for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57(51), 16796–16800 (2018)

    CAS  Google Scholar 

  18. K. Edalati et al., Enhanced photocatalytic hydrogen production on GaN–ZnO oxynitride by introduction of strain-induced nitrogen vacancy complexes. Acta Mater. 185, 149–156 (2020)

    CAS  Google Scholar 

  19. C.-H. Liao, C.-W. Huang, J. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2(4), 490–516 (2012)

    CAS  Google Scholar 

  20. F. Safari, I. Dincer, A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Convers. Manag. 205, 112182 (2020)

    CAS  Google Scholar 

  21. J.H. Kim et al., Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48(7), 1908–1971 (2019)

    PubMed  CAS  Google Scholar 

  22. Y. Zhang et al., Electrolysis of the Bunsen reaction and properties of the membrane in the sulfur–iodine thermochemical cycle. Ind. Eng. Chem. Res. 53(35), 13581–13588 (2014)

    CAS  Google Scholar 

  23. A. Steinfeld, Solar thermochemical production of hydrogen—a review. Sol. Energy 78(5), 603–615 (2005)

    CAS  Google Scholar 

  24. P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 67, 597–611 (2017)

    CAS  Google Scholar 

  25. J.E. Funk, Thermochemical hydrogen production: past and present. Int. J. Hydrog. Energy 26(3), 185–190 (2001)

    CAS  Google Scholar 

  26. D. Das, N. Khanna, N.T. Veziroğlu, Recent developments in biological hydrogen production processes. Chem. Ind. Chem. Eng. Q. 14(2), 57–67 (2008)

    CAS  Google Scholar 

  27. Y. Guan et al., Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem. Eng. J. 19(1), 69–73 (2004)

    CAS  Google Scholar 

  28. M. Ni et al., An overview of hydrogen production from biomass. Fuel Process. Technol. 87(5), 461–472 (2006)

    CAS  Google Scholar 

  29. I.K. Kapdan, F. Kargi, Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38(5), 569–582 (2006)

    CAS  Google Scholar 

  30. J.D. Holladay et al., An overview of hydrogen production technologies. Catal. Today 139(4), 244–260 (2009)

    CAS  Google Scholar 

  31. S. Dutta, J. Morehouse, J. Khan, Numerical analysis of laminar flow and heat transfer in a high temperature electrolyzer. Int. J. Hydrog. Energy 22(9), 883–895 (1997)

    CAS  Google Scholar 

  32. V. Utgikar, T. Thiesen, Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int. J. Hydrog. Energy 31(7), 939–944 (2006)

    CAS  Google Scholar 

  33. G. Sandstede, Status of technology and development in water electrolysis. Dechema Monographien 125, 329–355 (1992)

    CAS  Google Scholar 

  34. C. Acar, I. Dincer, G.F. Naterer, Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 40(11), 1449–1473 (2016)

    CAS  Google Scholar 

  35. S. Fujiwara et al., Hydrogen production by high temperature electrolysis with nuclear reactor. Prog. Nucl. Energy 50(2–6), 422–426 (2008)

    CAS  Google Scholar 

  36. V. Aroutiounian, V. Arakelyan, G. Shahnazaryan, Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy 78(5), 581–592 (2005)

    CAS  Google Scholar 

  37. Y. Miseki, K. Sayama, Photocatalytic water splitting for solar hydrogen production using the carbonate effect and the Z-scheme reaction. Adv. Energy Mater. 9(23), 1801294 (2019)

    Google Scholar 

  38. T. Takata, K. Domen, Particulate photocatalysts for water splitting. Recent advances and future prospects. ACS Energy Lett. 4, 542–549 (2019)

    CAS  Google Scholar 

  39. A.J. Bard, Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 10(1), 59–75 (1979)

    CAS  Google Scholar 

  40. K. Maeda et al., GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127(23), 8286–8287 (2005)

    PubMed  CAS  Google Scholar 

  41. Y. Lee et al., Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J. Phys. Chem. C 111(2), 1042–1048 (2007)

    CAS  Google Scholar 

  42. K. Sayama et al., Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation. Chem. Commun. 23, 2416–2417 (2001)

    Google Scholar 

  43. H. Kato et al., Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem. Lett. 33(10), 1348–1349 (2004)

    CAS  Google Scholar 

  44. K. Sayama et al., A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J. Photochem. Photobiol. A 148(1–3), 71–77 (2002)

    CAS  Google Scholar 

  45. K. Maeda, Photocatalytic water splitting using semiconductor particles: history and recent developments. J. Photochem. Photobiol. C 12(4), 237–268 (2011)

    CAS  Google Scholar 

  46. W.J. Youngblood et al., Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42(12), 1966–1973 (2009)

    PubMed  CAS  Google Scholar 

  47. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009)

    PubMed  CAS  Google Scholar 

  48. Y.-C. Chen et al., Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1−xS nanowires decorated by Au nanoparticles. Nano Energy 67, 104225 (2020)

    Google Scholar 

  49. N. Khalid et al., Highly visible light responsive metal loaded N/TiO2 nanoparticles for photocatalytic conversion of CO2 into methane. Ceram. Int. 43(9), 6771–6777 (2017)

    CAS  Google Scholar 

  50. M. Ni et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007)

    CAS  Google Scholar 

  51. D. Gao et al., Core-shell Ag@ Ni cocatalyst on the TiO2 photocatalyst: one-step photoinduced deposition and its improved H2-evolution activity. Appl. Catal. B 260, 118190 (2020)

    CAS  Google Scholar 

  52. G. Nabi et al., Gallium vacancies role in hydrogen storage of single-crystalline GaN hexagonal micro-sheets (J. Hydrog. Energy, Int, 2020). https://doi.org/10.1016/j.ijhydene.2019.12.042

    Book  Google Scholar 

  53. M. Rafique et al., Investigation of photocatalytic and seed germination effects of TiO2 nanoparticles synthesized by Melia azedarach L. leaf extract. J. Inorg. Organomet. Polym. Mater. 29(6), 2133–2144 (2019)

    CAS  Google Scholar 

  54. R.D. Tentu, S. Basu, Photocatalytic water splitting for hydrogen production. Curr. Opin. Electrochem. 5, 56–62 (2017)

    CAS  Google Scholar 

  55. M.G. Kibria et al., One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures. ACS Nano 7(9), 7886–7893 (2013)

    PubMed  CAS  Google Scholar 

  56. Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012)

    PubMed  CAS  Google Scholar 

  57. J.A. Christians, R.C. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2013)

    PubMed  Google Scholar 

  58. Q. Zhang et al., Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42(7), 3127–3171 (2013)

    PubMed  CAS  Google Scholar 

  59. J. Yu, X. Yu, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ. Sci. Technol. 42(13), 4902–4907 (2008)

    PubMed  CAS  Google Scholar 

  60. Y. Bi et al., Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 133(17), 6490–6492 (2011)

    PubMed  CAS  Google Scholar 

  61. E.V. Kondratenko et al., Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6(11), 3112–3135 (2013)

    CAS  Google Scholar 

  62. S.C. Roy et al., Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4(3), 1259–1278 (2010)

    PubMed  CAS  Google Scholar 

  63. A. Dhakshinamoorthy et al., Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 5(11), 9217–9233 (2012)

    CAS  Google Scholar 

  64. T. Shinagawa, K. Takanabe, Towards versatile and sustainable hydrogen production through electrocatalytic water splitting: electrolyte engineering. Chemsuschem 10(7), 1318–1336 (2017)

    PubMed  PubMed Central  CAS  Google Scholar 

  65. T. Hisatomi, K. Takanabe, K. Domen, Photocatalytic water-splitting reaction from catalytic and kinetic perspectives. Catal. Lett. 145(1), 95–108 (2015)

    CAS  Google Scholar 

  66. K. Takanabe, Solar water splitting using semiconductor photocatalyst powders, in Solar Energy for Fuels (Springer, Berlin, 2015), pp. 73–103

  67. C. Noda et al., Synthesis of three-component C3N4/rGO/C-TiO2 photocatalyst with enhanced visible-light responsive photocatalytic deNOx activity. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124616

    Article  Google Scholar 

  68. P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26(29), 4920–4935 (2014)

    PubMed  CAS  Google Scholar 

  69. S. Chen et al., Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting. J. Mater. Chem. A 7, 7415–7422 (2019)

    CAS  Google Scholar 

  70. S. Shen et al., Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 8(6–7), 523–591 (2011)

    CAS  Google Scholar 

  71. M.R. Gholipour et al., Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7(18), 8187–8208 (2015)

    Google Scholar 

  72. S. Sampath, K. Sellappa, Visible-light-driven photocatalysts for hydrogen production by water splitting. Energy Sources Part A: Recovery Util. Environ. Effects 42(6), 719–729 (2020)

    CAS  Google Scholar 

  73. L. Yuan et al., Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. Int. Rev. Phys. Chem. 35(1), 1–36 (2016)

    CAS  Google Scholar 

  74. E. Pelizzetti, C. Minero, Metal oxides as photocatalysts for environmental detoxification. Comments Inorg. Chem. 15(5–6), 297–337 (1994)

    CAS  Google Scholar 

  75. T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014)

    PubMed  CAS  Google Scholar 

  76. E. Borgarello et al., Visible light induced generation of hydrogen from H2S in CdS-dispersions, hole transfer catalysis by RuO2. Helv. Chim. Acta 65(1), 243–248 (1982)

    CAS  Google Scholar 

  77. J. Chae et al., Hydrogen production from photo splitting of water using the Ga-incorporated TiO2s prepared by a solvothermal method and their characteristics. Bull. Korean Chem. Soc. 30(2), 302–308 (2009)

    CAS  Google Scholar 

  78. D. Jing, Y. Zhang, L. Guo, Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem. Phys. Lett. 415(1–3), 74–78 (2005)

    CAS  Google Scholar 

  79. M. Zalas, M. Laniecki, Photocatalytic hydrogen generation over lanthanides-doped titania. Sol. Energy Mater. Sol. Cells 89(2–3), 287–296 (2005)

    CAS  Google Scholar 

  80. R. Sasikala et al., Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide. Int. J. Hydrog. Energy 33(19), 4966–4973 (2008)

    CAS  Google Scholar 

  81. S. Xu, D.D. Sun, Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO. Int. J. Hydrog. Energy 34(15), 6096–6104 (2009)

    CAS  Google Scholar 

  82. S. Xu et al., Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water. Int. J. Hydrog. Energy 35(11), 5254–5261 (2010)

    CAS  Google Scholar 

  83. H.-J. Choi, M. Kang, Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. Int. J. Hydrog. Energy 32(16), 3841–3848 (2007)

    CAS  Google Scholar 

  84. B. Zieliñska, E. Borowiak-Palen, R.J. Kalenczuk, Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors. Int. J. Hydrog. Energy 33(7), 1797–1802 (2008)

    Google Scholar 

  85. S.-C. Moon et al., Stoichiometric decomposition of pure water over Pt-loaded Ti/B binary oxide under UV-irradiation. Chem. Lett. 27(2), 117–118 (1998)

    Google Scholar 

  86. S.-C. Moon et al., Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catal. Today 58(2–3), 125–132 (2000)

    CAS  Google Scholar 

  87. H. Jeong et al., Hydrogen production by the photocatalytic overall water splitting on NiO/Sr3Ti2O7: effect of preparation method. Int. J. Hydrog. Energy 31(9), 1142–1146 (2006)

    CAS  Google Scholar 

  88. Y.-G. Ko, W.Y. Lee, Effects of nickel-loading method on the water-splitting activity of a layered NiOx/Sr4Ti3O10 photocatalyst. Catal. Lett. 83(3–4), 157–160 (2002)

    CAS  Google Scholar 

  89. T. Takata et al., Photocatalytic decomposition of water on spontaneously hydrated layered perovskites. Chem. Mater. 9(5), 1063–1064 (1997)

    CAS  Google Scholar 

  90. V.R. Reddy, D.W. Hwang, J.S. Lee, Effect of Zr substitution for Ti in KLaTiO4 for photocatalytic water splitting. Catal. Lett. 90(1–2), 39–43 (2003)

    CAS  Google Scholar 

  91. H.G. Kim et al., Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem. Commun. 12, 1077–1078 (1999)

    Google Scholar 

  92. Y. Miseki, H. Kato, A. Kudo, Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ. Sci. 2(3), 306–314 (2009)

    CAS  Google Scholar 

  93. R. Abe et al., Photocatalytic water splitting into H2 and O2 over R2Ti2O7 (R = Y, rare earth) with pyrochlore structure. Chem. Lett. 33(8), 954–955 (2004)

    CAS  Google Scholar 

  94. M. Higashi et al., Improvement of photocatalytic activity of titanate pyrochlore Y2Ti2O7 by addition of excess Y. Chem. Lett. 34(8), 1122–1123 (2005)

    CAS  Google Scholar 

  95. R. Abe et al., Photocatalytic activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for water splitting into H2 and O2. J. Phys. Chem. B 110(5), 2219–2226 (2006)

    PubMed  CAS  Google Scholar 

  96. A. Kudo, T. Kondo, Photoluminescent and photocatalytic properties of layered caesiumtitanates, Cs2TinO2n + 1 (n = 2, 5, 6). J. Mater. Chem. 7(5), 777–780 (1997)

    CAS  Google Scholar 

  97. H. Byrd et al., Crystal structure of a porous zirconium phosphate/phosphonate compound and photocatalytic hydrogen production from related materials. Chem. Mater. 8(9), 2239–2246 (1996)

    CAS  Google Scholar 

  98. Y. Miseki, H. Kato, A. Kudo, Water splitting into H2 and O2 over Ba5Nb4O15 photocatalysts with layered perovskite structure prepared by polymerizable complex method. Chem. Lett. 35(9), 1052–1053 (2006)

    CAS  Google Scholar 

  99. Y. Wei et al., Photocatalytic water splitting with In-doped H2LaNb2O7 composite oxide semiconductors. Sol. Energy Mater. Sol. Cells 93(8), 1176–1181 (2009)

    CAS  Google Scholar 

  100. H. Kato, K. Asakura, A. Kudo, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125(10), 3082–3089 (2003)

    PubMed  CAS  Google Scholar 

  101. A. Kudo, H. Kato, Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem. Phys. Lett. 331(5–6), 373–377 (2000)

    CAS  Google Scholar 

  102. H. Kato, A. Kudo, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal. Today 78(1–4), 561–569 (2003)

    CAS  Google Scholar 

  103. H. Kato, A. Kudo, Photocatalytic decomposition of pure water into H2 and O2 over SrTa2O6 prepared by a flux method. Chem. Lett. 28(11), 1207–1208 (1999)

    Google Scholar 

  104. K. Yoshioka et al., The relationship between photocatalytic activity and crystal structure in strontium tantalates. J. Catal. 232(1), 102–107 (2005)

    CAS  Google Scholar 

  105. M. Yoshino et al., Polymerizable complex synthesis of pure Sr2NbxTa2−xO7 solid solutions with high photocatalytic activities for water decomposition into H2 and O2. Chem. Mater. 14(8), 3369–3376 (2002)

    CAS  Google Scholar 

  106. H. Kato, A. Kudo, Energy structure and photocatalytic activity for water splitting of Sr2 (Ta1−XNbX) 2O7 solid solution. J. Photochem. Photobiol. A 145(1–2), 129–133 (2001)

    CAS  Google Scholar 

  107. A. Kudo, H. Kato, S. Nakagawa, Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. J. Phys. Chem. B 104(3), 571–575 (2000)

    CAS  Google Scholar 

  108. K. Kalyanasundaram et al., Cleavage of water by visible-light irradiation of colloidal CdS solutions; inhibition of photocorrosion by RuO2. Angew. Chem. Int. Ed. Engl. 20(11), 987–988 (1981)

    Google Scholar 

  109. H. Wang, A.L. Rogach, Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem. Mater. 26(1), 123–133 (2013)

    CAS  Google Scholar 

  110. C. Sun, H. Li, L. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5(9), 8475–8505 (2012)

    CAS  Google Scholar 

  111. M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal Oxides as Photocatalysts (Elsevier, Dordrecht, 2015)

    Google Scholar 

  112. K. Zhang, L. Guo, Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 3(7), 1672–1690 (2013)

    CAS  Google Scholar 

  113. T. Di et al., Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem 11(5), 1394–1411 (2019)

    CAS  Google Scholar 

  114. W. Shangguan, A. Yoshida, Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. J. Phys. Chem. B 106(47), 12227–12230 (2002)

    CAS  Google Scholar 

  115. M.B. Tahir et al., Fabrication of heterogeneous photocatalysts for insight role of carbon nanofibre in hierarchical WO3/MoSe2 composite for enhanced photocatalytic hydrogen generation. Ceram. Int. 45(5), 5547–5552 (2019)

    CAS  Google Scholar 

  116. T. Kanazawa et al., Structure and photocatalytic activity of PdCrOx cocatalyst on SrTiO3 for overall water splitting. Catalysts 9(1), 59 (2019)

    Google Scholar 

  117. Y. Nosaka, Y. Ishizuka, H. Miyama, Separation mechanism of a photoinduced electron-hole pair in metal-loaded semiconductor powders. Ber. Bunsenges. Phys. Chem. 90(12), 1199–1204 (1986)

    CAS  Google Scholar 

  118. J.R. Darwent, G. Porter, Photochemical hydrogen production using cadmium sulphide suspensions in aerated water. J. Chem. Soc. Chem. Commun. 4, 145–146 (1981)

    Google Scholar 

  119. M. Sathish, B. Viswanathan, R. Viswanath, Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting. Int. J. Hydrog. Energy 31(7), 891–898 (2006)

    CAS  Google Scholar 

  120. J.S. Jang et al., Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Appl. Catal. A 346(1–2), 149–154 (2008)

    CAS  Google Scholar 

  121. K. Kanade et al., Nano-CdS by polymer-inorganic solid-state reaction: visible light pristine photocatalyst for hydrogen generation. Mater. Res. Bull. 41(12), 2219–2225 (2006)

    CAS  Google Scholar 

  122. Y. Li et al., Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C 113(21), 9352–9358 (2009)

    CAS  Google Scholar 

  123. A. Sinha et al., Preparation of egg-shell type Al2O3-supported CdS photocatalysts for reduction of H2O to H2. Catal. Today 69(1–4), 297–305 (2001)

    CAS  Google Scholar 

  124. M.K. Arora et al., Activity of cadmium sulfide photocatalysts for hydrogen production from water: role of support. Ind. Eng. Chem. Res. 38(7), 2659–2665 (1999)

    CAS  Google Scholar 

  125. S. Shen et al., Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS. Int. J. Hydrog. Energy 35(13), 7110–7115 (2010)

    CAS  Google Scholar 

  126. M. Subrahmanyam, V. Supriya, P.R. Reddy, Photocatalytic H2 production with CdS-based catalysts from a sulphide/sulphite substrate: an effort to develop MgO-supported catalysts. Int. J. Hydrog. Energy 21(2), 99–106 (1996)

    CAS  Google Scholar 

  127. T. Kida et al., Photocatalytic hydrogen production from water over a LaMnO3/CdS nanocomposite prepared by the reverse micelle method. J. Mater. Chem. 13(5), 1186–1191 (2003)

    CAS  Google Scholar 

  128. Z. Shen et al., Sonochemistry synthesis of nanocrystals embedded in a MoO3–CdS core–shell photocatalyst with enhanced hydrogen production and photodegradation. J. Mater. Chem. 22(37), 19646–19651 (2012)

    CAS  Google Scholar 

  129. H. Fujii et al., Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix. J. Mol. Catal. A: Chem. 129(1), 61–68 (1998)

    CAS  Google Scholar 

  130. J.S. Jang et al., Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chem. Phys. Lett. 425(4–6), 278–282 (2006)

    CAS  Google Scholar 

  131. J.S. Jang et al., Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ ≥ 420 nm). J. Photochem. Photobiol. A 188(1), 112–119 (2007)

    CAS  Google Scholar 

  132. C. Li et al., TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. Int. J. Hydrog. Energy 35(13), 7073–7079 (2010)

    CAS  Google Scholar 

  133. X. Wang et al., Stable photocatalytic hydrogen evolution from water over ZnO–CdS core–shell nanorods. Int. J. Hydrog. Energy 35(15), 8199–8205 (2010)

    CAS  Google Scholar 

  134. C. Xing et al., Band structure-controlled solid solution of Cd1−xZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrog. Energy 31(14), 2018–2024 (2006)

    CAS  Google Scholar 

  135. M.A. Fox, T.L. Pettit, Photoactivity of zeolite-supported cadmium sulfide: hydrogen evolution in the presence of sacrificial donors. Langmuir 5(4), 1056–1061 (1989)

    CAS  Google Scholar 

  136. Y. Li et al., Photocatalytic hydrogen evolution over Pt/Cd0.5Zn0.5S from saltwater using glucose as electron donor: an investigation of the influence of electrolyte NaCl. Int. J. Hydrog. Energy 36(7), 4291–4297 (2011)

    CAS  Google Scholar 

  137. J. Yu, B. Yang, B. Cheng, Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance. Nanoscale 4(8), 2670–2677 (2012)

    PubMed  CAS  Google Scholar 

  138. H.C. Youn, S. Baral, J.H. Fendler, Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation. J. Phys. Chem. 92(22), 6320–6327 (1988)

    CAS  Google Scholar 

  139. A. Roy, G. De, Immobilisation of CdS, ZnS and mixed ZnS–CdS on filter paper: effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. J. Photochem. Photobiol. A 157(1), 87–92 (2003)

    CAS  Google Scholar 

  140. A. Koca, M. Şahin, Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. Int. J. Hydrog. Energy 27(4), 363–367 (2002)

    CAS  Google Scholar 

  141. X. Bai, J. Li, Photocatalytic hydrogen generation over porous ZnIn2S4 microspheres synthesized via a CPBr-assisted hydrothermal method. Mater. Res. Bull. 46(7), 1028–1034 (2011)

    CAS  Google Scholar 

  142. S. Shen, L. Zhao, L. Guo, Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production. Int. J. Hydrog. Energy 33(17), 4501–4510 (2008)

    CAS  Google Scholar 

  143. B. Chai et al., Preparation of a MWCNTs/ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation. Dalton Trans. 41(4), 1179–1186 (2012)

    PubMed  CAS  Google Scholar 

  144. K. Zhang, Z. Zhou, L. Guo, Alkaline earth metal as a novel dopant for chalcogenide solid solution: improvement of photocatalytic efficiency of Cd1−xZnxS by barium surface doping. Int. J. Hydrog. Energy 36(16), 9469–9478 (2011)

    CAS  Google Scholar 

  145. A. Bhirud et al., Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. Int. J. Hydrog. Energy 36(18), 11628–11639 (2011)

    CAS  Google Scholar 

  146. B.B. Kale et al., CdIn2S4 nanotubes and “Marigold” nanostructures: a visible-light photocatalyst. Adv. Func. Mater. 16(10), 1349–1354 (2006)

    CAS  Google Scholar 

  147. J.S. Jang et al., AgGaS2-type photocatalysts for hydrogen production under visible light: effects of post-synthetic H2S treatment. J. Solid State Chem. 180(3), 1110–1118 (2007)

    CAS  Google Scholar 

  148. D. Chen, J. Ye, Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. J. Phys. Chem. Solids 68(12), 2317–2320 (2007)

    CAS  Google Scholar 

  149. T. Arai et al., Cu-doped ZnS hollow particle with high activity for hydrogen generation from alkaline sulfide solution under visible light. Chem. Mater. 20(5), 1997–2000 (2008)

    CAS  Google Scholar 

  150. M. Tabata et al., Photocatalytic hydrogen evolution from water using copper gallium sulfide under visible-light irradiation. J. Phys. Chem. C 114(25), 11215–11220 (2010)

    CAS  Google Scholar 

  151. S.Y. Reece et al., Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science (2011). https://doi.org/10.1126/science.1209816

    Article  PubMed  Google Scholar 

  152. M.W. Kanan, D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892), 1072–1075 (2008)

    PubMed  CAS  Google Scholar 

  153. R.K. Hocking et al., Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat. Chem. 3(6), 461 (2011)

    PubMed  CAS  Google Scholar 

  154. M.M. Najafpour, Oxygen evolving complex in Photosystem II: better than excellent. Dalton Trans. 40(36), 9076–9084 (2011)

    PubMed  CAS  Google Scholar 

  155. A. Zouni et al., Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409(6821), 739 (2001)

    PubMed  CAS  Google Scholar 

  156. K.N. Ferreira et al., Architecture of the photosynthetic oxygen-evolving center. Science 303(5665), 1831–1838 (2004)

    PubMed  CAS  Google Scholar 

  157. A. Guskov et al., Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16(3), 334 (2009)

    PubMed  CAS  Google Scholar 

  158. M.M. Najafpour, A possible evolutionary origin for the Mn4 cluster in photosystem II: from manganese superoxide dismutase to oxygen evolving complex. Orig. Life Evol. Biosph. 39(2), 151–163 (2009)

    PubMed  CAS  Google Scholar 

  159. Y. Nishiyama, S.I. Allakhverdiev, N. Murata, Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol. Plant. 142(1), 35–46 (2011)

    PubMed  CAS  Google Scholar 

  160. K. Kawakami et al., Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 Å resolution. J. Photochem. Photobiol. B: Biol. 104(1–2), 9–18 (2011)

    CAS  Google Scholar 

  161. Y. Umena et al., Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345), 55 (2011)

    PubMed  CAS  Google Scholar 

  162. M.M. Najafpour, S.I. Allakhverdiev, Manganese compounds as water oxidizing catalysts for hydrogen production via water splitting: from manganese complexes to nano-sized manganese oxides. Int. J. Hydrog. Energy 37(10), 8753–8764 (2012)

    CAS  Google Scholar 

  163. K. Mori, M. Dojo, H. Yamashita, Pd and Pd–Ag nanoparticles within a macroreticular basic resin: an efficient catalyst for hydrogen production from formic acid decomposition. Acs Catal. 3(6), 1114–1119 (2013)

    CAS  Google Scholar 

  164. G. Nabi et al., Green synthesis of TiO2 nanoparticles using lemon peel extract: their optical and photocatalytic properties. Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1722816

    Article  Google Scholar 

  165. M. Rafique et al., Aquatic biodegradation of methylene blue by copper oxide nanoparticles synthesized from Azadirachta indica leaves extract. J. Inorg. Organomet. Polym Mater. 28(6), 2455–2462 (2018)

    CAS  Google Scholar 

  166. K.E. Dekrafft, C. Wang, W. Lin, Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv. Mater. 24(15), 2014–2018 (2012)

    PubMed  CAS  Google Scholar 

  167. G.M. Scheuermann et al., Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki − Miyaura coupling reaction. J. Am. Chem. Soc. 131(23), 8262–8270 (2009)

    PubMed  CAS  Google Scholar 

  168. H. Zhang et al., P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009)

    Google Scholar 

  169. Y. Zhang et al., TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from other TiO2–carbon composite materials? ACS Nano 4(12), 7303–7314 (2010)

    PubMed  CAS  Google Scholar 

  170. G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7), 1487–1491 (2008)

    PubMed  CAS  Google Scholar 

  171. W. Fan et al., Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J. Phys. Chem. C 115(21), 10694–10701 (2011)

    CAS  Google Scholar 

  172. T. Peng et al., Enhanced photocatalytic hydrogen production over graphene oxide–cadmium sulfide nanocomposite under visible light irradiation. J. Phys. Chem. C 116(43), 22720–22726 (2012)

    CAS  Google Scholar 

  173. H.-I. Kim et al., Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet. J. Phys. Chem. C 116(1), 1535–1543 (2011)

    Google Scholar 

  174. Y. Zhang et al., Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6(11), 9777–9789 (2012)

    PubMed  CAS  Google Scholar 

  175. J. Zhang et al., Noble metal-free reduced graphene oxide-ZnxCd1−xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 12(9), 4584–4589 (2012)

    PubMed  CAS  Google Scholar 

  176. A. Iwase et al., Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133(29), 11054–11057 (2011)

    PubMed  CAS  Google Scholar 

  177. T. Di et al., Hierarchically CdS–Ag2S nanocomposites for efficient photocatalytic H2 production. Appl. Surf. Sci. 470, 196–204 (2019)

    CAS  Google Scholar 

  178. M. Chandra, K. Bhunia, D. Pradhan, Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting. Inorg. Chem. 57(8), 4524–4533 (2018)

    PubMed  CAS  Google Scholar 

  179. H.Y. Hafeez et al., Ultrasound assisted synthesis of reduced graphene oxide (rGO) supported InVO4-TiO2 nanocomposite for efficient Hydrogen production. Ultrason. Sonochem. (2018). https://doi.org/10.1016/j.ultsonch.2018.12.009

    Article  PubMed  Google Scholar 

  180. H. Li et al., Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 129(15), 4538–4539 (2007)

    PubMed  CAS  Google Scholar 

  181. H. Liu, J. Zhang, D. Ao, Construction of heterostructured ZnIn2S4@ NH2-MIL-125 (Ti) nanocomposites for visible-light-driven H2 production. Appl. Catal. B 221, 433–442 (2018)

    CAS  Google Scholar 

  182. M. Pirhashemi, A. Habibi-Yangjeh, Facile fabrication of novel ZnO/CoMoO4 nanocomposites: highly efficient visible-light-responsive photocatalysts in degradations of different contaminants. J. Photochem. Photobiol. A 363, 31–43 (2018)

    CAS  Google Scholar 

  183. M. Mousavi, A. Habibi-Yangjeh, Magnetically recoverable highly efficient visible-light-active g-C3N4/Fe3O4/Ag2WO4/AgBr nanocomposites for photocatalytic degradations of environmental pollutants. Adv. Powder Technol. 29(1), 94–105 (2018)

    CAS  Google Scholar 

  184. N. Qin et al., One-dimensional CdS/TiO2 nanofiber composites as efficient visible-light-driven photocatalysts for selective organic transformation: synthesis, characterization, and performance. Langmuir 31(3), 1203–1209 (2015)

    PubMed  CAS  Google Scholar 

  185. S. Zhang et al., MoSSe nanotube: a promising photocatalyst with an extremely long carrier lifetime. J. Mater. Chem. A 7, 7885–7890 (2019)

    CAS  Google Scholar 

  186. S. Yao et al., 2D Triphosphides: SbP3 and GaP3 monolayer as promising photocatalysts for water splitting. Int. J. Hydrog. Energy 44, 5948–5954 (2019)

    CAS  Google Scholar 

  187. Q.H. Wang et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699 (2012)

    PubMed  CAS  Google Scholar 

  188. B. Lu, X. Zheng, Z. Li, Few-layer P4O2: a promising photocatalyst for water splitting. ACS Appl. Mater. Interfaces 11, 10163–10170 (2019)

    PubMed  CAS  Google Scholar 

  189. M.B. Tahir et al., Role of MoSe2 on nanostructures WO3-CNT performance for photocatalytic hydrogen evolution. Ceram. Int. 44(6), 6686–6690 (2018)

    CAS  Google Scholar 

  190. A. Usman et al., Spectroscopic and structural dynamics of MoS2 thin films. J. Nano Res. 58, 74–79 (2019)

    CAS  Google Scholar 

  191. K.F. Mak et al., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Google Scholar 

  192. M. Bernardi, M. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13(8), 3664–3670 (2013)

    PubMed  CAS  Google Scholar 

  193. B. Hinnemann et al., Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127(15), 5308–5309 (2005)

    PubMed  CAS  Google Scholar 

  194. D. Voiry, J. Yang, M. Chhowalla, Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 28(29), 6197–6206 (2016)

    PubMed  CAS  Google Scholar 

  195. C. Tsai et al., Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys. Chem. Chem. Phys. 16(26), 13156–13164 (2014)

    PubMed  CAS  Google Scholar 

  196. S.M. Tan et al., Pristine basal and edge plane oriented molybdenite MoS2 exhibiting highly anisotropic properties. Chem. A Eur. J. 21(19), 7170–7178 (2015)

    CAS  Google Scholar 

  197. C. Tsai et al., Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015)

    CAS  Google Scholar 

  198. M. Shao et al., Synergistic effect of 2D Ti2C and gC3N4 for efficient photocatalytic hydrogen production. J. Mater. Chem. A 5(32), 16748–16756 (2017)

    CAS  Google Scholar 

  199. F.A. Frame, F.E. Osterloh, CdSe-MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114(23), 10628–10633 (2010)

    CAS  Google Scholar 

  200. X. Zong et al., Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J. Phys. Chem. C 115(24), 12202–12208 (2011)

    CAS  Google Scholar 

  201. G. Chen et al., A novel noble metal-free ZnS–WS2/CdS composite photocatalyst for H2 evolution under visible light irradiation. Catal. Commun. 40, 51–54 (2013)

    Google Scholar 

  202. J. Chen et al., One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. 127(4), 1226–1230 (2015)

    Google Scholar 

  203. M. Nguyen et al., In situ photo-assisted deposition of MoS2 electrocatalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation. Nanoscale 5(4), 1479–1482 (2013)

    PubMed  CAS  Google Scholar 

  204. G. Tian et al., Enhanced photocatalytic hydrogen evolution over hierarchical composites of ZnIn2S4 nanosheets grown on MoS2 slices. Chem. Asian J. 9(5), 1291–1297 (2014)

    PubMed  CAS  Google Scholar 

  205. W. Jiang et al., Photocatalytic hydrogen generation on bifunctional ternary heterostructured In2S3/MoS2/CdS composites with high activity and stability under visible light irradiation. J. Mater. Chem. A 3(36), 18406–18412 (2015)

    CAS  Google Scholar 

  206. B. Mahler et al., Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136(40), 14121–14127 (2014)

    PubMed  CAS  Google Scholar 

  207. M. Latorre-Sánchez et al., Innovative preparation of MoS2–graphene heterostructures based on alginate containing (NH4) 2MoS4 and their photocatalytic activity for H2 generation. Carbon 81, 587–596 (2015)

    Google Scholar 

  208. S. Min, G. Lu, Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene. J. Phys. Chem. C 116(48), 25415–25424 (2012)

    CAS  Google Scholar 

  209. Y. Hou et al., Photocatalytic hydrogen production over carbon nitride loaded with WS2 as cocatalyst under visible light. Appl. Catal. B 156, 122–127 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rafique.

Ethics declarations

Conflict of interest

I (we) certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafique, M., Mubashar, R., Irshad, M. et al. A Comprehensive Study on Methods and Materials for Photocatalytic Water Splitting and Hydrogen Production as a Renewable Energy Resource. J Inorg Organomet Polym 30, 3837–3861 (2020). https://doi.org/10.1007/s10904-020-01611-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01611-9

Keywords

Navigation