Skip to main content
Log in

Effect of Size and Content of SiO2 Nanoparticle on Corona Resistance of Silicon–Boron Composite Oxide/SiO2/Epoxy Composite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Corona discharge always threatens the safe and long-term operation of electrical equipment. Therefore, it is imperative to improve the corona resistance of electrical insulation materials. In this research work, fumed silica (SiO2) with different particle sizes and self-made organic silicon–boron composite oxide (Si–B) are used to modify epoxy resin (EP) for enhancing the corona resistance. Si–B/SiO2/EP nanocomposites with different SiO2 content series and 4 kinds of SiO2 particle size series are prepared by grinding machine dispersing and thermal curing. A strong dependence of the corona resistance on SiO2 filler size in nano-scale and content is revealed experimentally. The filler combination of Si–B and nano-SiO2 can reduce the relative permittivity of the Si–B/SiO2/EP nanocomposites and inhibit the increase of dielectric loss. With the particle size of SiO2 filler increases, the space charge suppression effect and the thermal stability are reduced, but corona resistance life is improved.When the 15-nm SiO2 content is 15 wt%, the corona resistance life of the Si–B/SiO2/EP nanocomposites can reach 8.99 h under 90 °C and 80 kV/mm electric field strength, while pure epoxy is only 0.86 h. The degradation path through the material is the more important factor affecting corona resistance performance–large particle size and well dispersion state can effectively extend the degradation path through the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.M.A. Desai, P. Mishra, N.J. Vasa, R. Sarathi, T. Imai, Understanding the performance of corona aged epoxy nano micro composites. Micro Nano Lett. 13(9), 1280–1285 (2018). https://doi.org/10.1049/mnl.2018.0164

    Article  CAS  Google Scholar 

  2. M.S. Babu, R. Sarathi, N.J. Vasa, T. Imai, Understanding the influence of nano micro filler on electrical and mechanical behaviour of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 26(4), 1098–1106 (2019). https://doi.org/10.1109/tdei.2019.007875

    Article  CAS  Google Scholar 

  3. C. Martín, G. Lligadas, J.C. Ronda, M. Galià, V. Cadiz, Synthesis of novel boron-containing epoxy-novolac resins and properties of cured products. J. Polym. Sci. Part A 44(21), 6332–6344 (2006). https://doi.org/10.1002/pola.21726

    Article  CAS  Google Scholar 

  4. S. Li, S. Yu, Y. Feng, Progress in and prospects for electrical insulating materials. High Volt. 1(3), 122–129 (2016). https://doi.org/10.1049/hve.2016.0034

    Article  Google Scholar 

  5. Z. An, H. Xiao, F. Liu, F. Zheng, Q. Lei, Y. Zhang, Improved resistance of epoxy resin to corona discharge by direct fluorination. IEEE Trans. Dielectr. Electr. Insul. 23(4), 2278–2287 (2016). https://doi.org/10.1109/TDEI.2016.7556504

    Article  CAS  Google Scholar 

  6. A.J. Reid, M.D. Judd, B.G. Stewart, R.A. Fouracre, Partial discharge current pulses in SF6 and the effect of superposition of their radiometric measurement. J. Phys. D 39, 4167–4177 (2006). https://doi.org/10.1088/0022-3727/39/19/008

    Article  CAS  Google Scholar 

  7. M.T. Nazir, B.T. Phung, S. Yu, S. Li, Resistance against AC corona discharge of micro-ATH/nano-Al2O3 co-filled silicone rubber composites. IEEE Trans. Dielectr. Electr. Insul. 25(2), 657–667 (2018). https://doi.org/10.1109/TDEI.2018.006914

    Article  CAS  Google Scholar 

  8. H. Lu, J. Lin, W. Yang et al., Effect of nano-TiO2 surface modification on polarization characteristics and corona aging performance of polyimide nano-composites. J. Appl. Polym. Sci. 134(29), 1–9 (2017). https://doi.org/10.1002/app.45101

    Article  CAS  Google Scholar 

  9. C. Zhou, A. Gu, G. Liang, Y. Xia, Tough silica-hybridized epoxy resin/anhydride system with good corona resistance and thermal stability for permanent magnet synchronous wind-driven generators through vacuum pressure impregnation. Ind. Eng. Chem. Res. 54(28), 7102–7112 (2015). https://doi.org/10.1021/ie504737g

    Article  CAS  Google Scholar 

  10. Y. Xia, C. Zhou, G. Liang, A. Gu, W. Wang, Polyester-imide solventless impregnating resin and its nano-silica modified varnishes with excellent corona resistance and thermal stability. IEEE Trans. Dielectr. Electr. Insul.22(1), 372–379 (2015). https://doi.org/10.1109/TDEI.2014.004251

    Article  CAS  Google Scholar 

  11. H. Shi, L. Liu, L. Weng, W. Cui, X. Zhu, Preparation and characterization of polyimide/Al2O3 nanocomposite film with good Corona resistance. Polym. Compos. 37(1), 915–924 (2016). https://doi.org/10.1002/pc.23233

    Article  CAS  Google Scholar 

  12. M.-Z. Gao, P.-H. Zhang, Relationship between dielectric properties and nanoparticle dispersion of nano-SiO2/epoxy composite. Acta Phys. Sin. 65(24), 247802 (2016). https://doi.org/10.7498/aps.65.247802

    Article  CAS  Google Scholar 

  13. G. Iyer, R.S. Gorur, A. Krivda, Corona resistance of epoxy nanocomposites: experimental results and modeling. IEEE Trans. Dielectr. Electr. Insul. 19(1), 118–125 (2012). https://doi.org/10.1109/TDEI.2012.6148509

    Article  CAS  Google Scholar 

  14. F. Wang, Y. He, T. Zhang, J. Li and L. He. Corona resistance of direct flourinated epoxy/Al2O3 nanocomposites. 2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika), Pilsen, 2018, pp. 1–4. https://doi.org/10.1109/DIAGNOSTIKA.2018.8526102.

  15. W. Zhao, Y. Fan, H. Chen, Dielectric properties and corona resistance of Si-B/epoxy nano-composites. J. Mater. Sci. Mater. Electron. 30(17), 16298–16307 (2019). https://doi.org/10.1007/s10854-019-02000-w

    Article  CAS  Google Scholar 

  16. W. Sun, N. Bowler, Dielectric properties of silanized-silicon/epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 23(4), 2095–2101 (2016). https://doi.org/10.1109/TDEI.2016.7556483

    Article  CAS  Google Scholar 

  17. Z. Wu, S. Gao, L. Chen et al., Electrically insulated epoxy nanocomposites reinforced with synergistic core-shell SiO2 @MWCNTs and montmorillonite bifillers. Macromol. Chem. Phys. 218(23), 1–9 (2017). https://doi.org/10.1002/macp.201700357

    Article  CAS  Google Scholar 

  18. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, T. Tanaka, Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv. Funct. Mater. 23(14), 1824–1831 (2013). https://doi.org/10.1002/adfm.201201824

    Article  CAS  Google Scholar 

  19. S. Li, G. Yin, S. Bai, J. Li, A new potential barrier model in epoxy resin nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 18(5), 1535–1543 (2011). https://doi.org/10.1109/TDEI.2011.6032822

    Article  CAS  Google Scholar 

  20. Z. Lv, X. Wang, K. Wu, X. Chen, Y. Cheng, L. Dissado, Dependence of charge accumulation on sample thickness in nano-SiO2 doped IDPE. IEEE Trans. Dielectr. Electr. Insul.20(1), 337–345 (2013). https://doi.org/10.1109/TDEI.2013.6451375

    Article  CAS  Google Scholar 

  21. Y. Han, S. Li, D. Min, Space charge distribution and nonlinear conduction of epoxy nanocomposites. Sens. Mater. 29(8), 1159–1168 (2017). https://doi.org/10.18494/sam.2017.1540

    Article  CAS  Google Scholar 

  22. P. Preetha, M.J. Thomas, AC breakdown characteristics of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 18(5), 1526–1534 (2011). https://doi.org/10.1109/TDEI.2011.6032821

    Article  CAS  Google Scholar 

  23. G.Y. Li, J.H. Yin, L. Yao, X. Zhao, Particle size effect on the Corona resistant properties of PI/TiO2 composite films. Adv. Mater. Res. 981, 914–917 (2014). https://doi.org/10.4028/www.scientific.net/amr.981.914

    Article  Google Scholar 

  24. X. Wang, Y. Fan, H. Chen, R. Yang, W. Zhao, Electrical, mechanical, and thermal properties of Mg(OH)2/PI nanocomposite films. J. Inorg. Organomet. Polym. Mater. 27(6), 1778–1786 (2017). https://doi.org/10.1007/s10904-017-0641-6

    Article  CAS  Google Scholar 

  25. W. Zhao, H. Chen, Y. Fan, Corona resistance performance of epoxy resin modified by hydrophobic fumed SiO2. Acta Mater. Composit. Sin. 36(08), 1822–1829 (2019). https://doi.org/10.13801/j.cnki.fhclxb.20180925.001

    Article  Google Scholar 

  26. C. Chen, Y. Gu, S. Wang, Z. Zhang, M. Li, Z. Zhang, Fabrication and characterization of structural/dielectric three-phase composite: continuous basalt fiber reinforced epoxy resin modified with graphene nanoplates. Compos. Part A 94, 199–208 (2017). https://doi.org/10.1016/j.compositesa.2016.12.023

    Article  CAS  Google Scholar 

  27. P. Maity, S. Basu, V. Parmeswaran, N. Gupta, Degradation of polymer dielectrics with nanometric metal-oxide fillers due to surface discharges. IEEE Trans. Dielectr. Electr. Insul. 15, 52–62 (2008). https://doi.org/10.1109/t-dei.2008.4446736

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Foundation for Universities of Heilongjiang Province (LGYC2018JC033), the National Natural Science Foundation of China (No. 51277044) and the National Natural Science Foundation of China (51603057)

Funding

Fundamental Research Fundation for Universities of Heilongjiang Province (LGYC2018JC033) and the National Natural Science Foundation of China (51603057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Chen, H., Fan, Y. et al. Effect of Size and Content of SiO2 Nanoparticle on Corona Resistance of Silicon–Boron Composite Oxide/SiO2/Epoxy Composite. J Inorg Organomet Polym 30, 4753–4763 (2020). https://doi.org/10.1007/s10904-020-01733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01733-0

Keywords

Navigation