Skip to main content

Advertisement

Log in

Bioengineered 2D Ultrathin Sharp-Edged MgO Nanosheets Using Achyranthes aspera Leaf Extract for Antimicrobial Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

For the first time, we have been reported the phytosynthesis of ultrathin 2D layered sharp-edged MgO nanosheets using Achyranthes aspera (0.5, 1.0, 1.5, and 2%) via green route without any surfactants and the rarely characterized and emerging pathogens of Eggerthella lenta and Enterobacter aerogenes were used to evaluate the antibacterial activity of biosynthesized MgO nanomaterials. A. aspera has a superior role as a non-toxic bio-reducing agent in an entire synthesized process of MgO nanomaterial. Furthermore, the structure, morphology and physicochemical properties of the synthesized materials were elucidated by the analytical techniques like powder X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), Energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and UV–Visible Spectroscopy (UV–Vis). The scanning electron microscopic analysis (SEM) explored the morphology as a 2D nanostructure of A. aspera mediated ultrathin MgO nanosheets. Further, the microscopic analysis HRTEM revealed that the morphological refinement was greatly achieved by varying the concentration of the leaf extract utilized as a capping as well as the reducing agent. An In vitro antibacterial and antifungal analysis were quantitatively investigated for the 2D nanostructure of A. aspera mediated ultrathin MgO nanosheets. Besides, mechanism involving in the formation of MgO nanosheets and antimicrobial activity are well demonstrated to deepen the knowledge towards enhancement possibilities for the metal oxide nanoparticle synthesis and applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Jeevanandam, Y. San Chan, M.K. Danquah, Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J. Chem. 41(7), 2800–2814 (2017)

    CAS  Google Scholar 

  2. R.K. Sharma, S. Gulati, S. Mehta, Preparation of gold nanoparticles using tea: a green chemistry experiment. J. Chem. Educ. 89(10), 1316–1318 (2012)

    CAS  Google Scholar 

  3. S. Taheriniya, Z. Behboodi, Comparing green chemical methods and chemical methods for the synthesis of titanium dioxide nanoparticles. IJPSR 7(12), 4927 (2016)

    CAS  Google Scholar 

  4. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019)

    CAS  Google Scholar 

  5. V. Gnanavel, V. Palanichamy, S. MohanaRoopan, Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (hct-116). J. Photochem. Photobiol. B 171, 133–138 (2017)

    CAS  PubMed  Google Scholar 

  6. S. Sabir, M. Arshad, S.K. Chaudhari, Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. TSWJ. 925494 (2014)

  7. M. Arakha, S. Pal, D. Samantarrai, T.K. Panigrahi, B.C. Mallick, K. Pramanik, B. Mallick, S. Jha, Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 5, 14813 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Thirupathi, G. Solleti, T. Sreekanth, K. Sadasivuni, K. Venkateswara Rao, A comparative study of chemically and biologically synthesized MgO nanomaterial for liquefied petroleum gas detection. J. Electron. Mater. 47(7), 3468–3473 (2018)

    CAS  Google Scholar 

  9. M. Shahriarya, H. Veisib, M. Hekmatia, S. Hemmati, In situ green synthesis of ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mater. Sci. Eng. C 90, 57–66 (2018)

    Google Scholar 

  10. Y. Abdallah, S.O. Ogunyemi, A. Abdelazez, M. Zhang, X. Hong, E. Ibrahim, A. Hossain, H. Fouad, B. Li, J. Chen, The green synthesis of MgO nano-flowers using Rosmarinus officinalis l. (rosemary) and the antibacterial activities against Xanthomonas oryzae pv. Oryzae. Biomed. Res. Int. 8, 5620989 (2019)

    Google Scholar 

  11. C.C. Coelho, R. Araújo, P.A. Quadros, S.R. Sousa, F.J. Monteiro, Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopaedic infections. Mater. Sci. Eng. C 97, 529–538 (2019)

    CAS  Google Scholar 

  12. A. Marcu, S. Pop, F. Dumitrache, M. Mocanu, C.M. Niculite, M. Gherghiceanu, C.P. Lungu, C. Fleaca, R. Ianchis, A. Barbut, C. Grigoriu, Magnetic iron oxide nanoparticles as drug delivery system in breast cancer. Appl. Surf. Sci. 15(281), 60–5 (2013)

    Google Scholar 

  13. E. Creamer, B. Gao, A. Zimmerman, W. Harris, Biomass-facilitated production of activated magnesium oxide nanoparticles with extraordinary co2 capture capacity. Chem. Eng. 334, 81–88 (2018)

    CAS  Google Scholar 

  14. K.M. Saoud, S. Saeed, R.M. Al-Soubaihi, M.F. Bertino, Microwave assisted preparation of magnesium hydroxide nano-sheets. J. Nanomater. 2, 21–25 (2014)

    CAS  Google Scholar 

  15. P. Tamilselvi, A. Yelilarasi, M. Hema, R. Anbarasan, Synthesize of hierarchical structured MgO by sol-gel method. Nano Bull. 2, 130106 (2013)

    Google Scholar 

  16. K. Ganapathi Rao, C.H. Ashok, K. Venkateswara Rao, C.H. Shilpa Chakra, Structural properties of MgO nanoparticles: synthesized by co-precipitation technique. Int. J. Sci. Res. 3(12), 43–46 (2013)

    Google Scholar 

  17. N. Pantidos, L.E. Horsfall, Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol. 5(5), 1 (2014)

    Google Scholar 

  18. G.S. El-Sayyad, F.M. Mosallam, A.I. El-Batal, One-pot green synthesis of magnesium oxide nanoparticles using penicillium Chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv. Powder Technol. 29, 2616–262519 (2018)

    CAS  Google Scholar 

  19. T.B. Nijalingappa, M.K. Veeraiah, R.B. Basavaraj, G.P. Darshan, S.C. Sharma, H. Nagabhushana, Antimicrobial properties of green synthesis of MgO micro architectures via Limonia acidissimafruit extract. Biocatal Agric. Biotechnol. 18, 100991 (2019)

    Google Scholar 

  20. K. Ramanujam, M. Sundrarajan, Antibacterial effects of biosynthesized MgO nanoparticles using ethanolic fruit extract of Emblica officinalis. J. Photochem. Photobiol. B 141, 296–300 (2014)

    CAS  PubMed  Google Scholar 

  21. N.J. Sushma, D. Prathyusha, G. Swathi, T. Madhavi, B.D. Raju, K. Mallikarjuna, H.S. Kim, Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies. Appli. Nanosci. 6(3), 437–44 (2016)

    Google Scholar 

  22. G. Sharmila, C. Muthukumaran, E. Sangeeth, H. Saraswathi, S. Soundarya, N. Manoj Kumar, Green fabrication, characterization of Pisonia alba leaf extract derived MgO nanoparticles and its biological applications. Nano-struct. Nano-obj. 20, 100380 (2019)

    CAS  Google Scholar 

  23. S. Sureshkumar, J. Devagnana Roopan, A. Sivaraj, K. Devi, B. Senthilkumar, Pharmacognosy of Achyranthes asperalinn: a review. ARJLS 1 (2015)

  24. A. Habtamu, Y. Mekonnen, Evaluation of the antibacterial activities of leaf extracts of Achyranthus aspera. Afr. J. Bacteriol. Res. 9(2), 9–14 (2017)

    CAS  Google Scholar 

  25. W. Shibeshi, Μ.E. Makonnen, A. Debella, L. Zerihun, Phytochemical, contraceptive efficacy and safety evaluations of the methanolic leaves extract of Achyranthes asperain rats. Pharmacology. 3, 217–224 (2006)

    Google Scholar 

  26. P.R. Subbarayana, M. Sarkarb, S. Impellizzeric, F. Raymoc, B.L. Lokeshward, P. Kumare, R.P. Agarwala, B. Ardalan, Anti-proliferative and anti-cancer properties of Achyranthes aspera: specific inhibitory activity against pancreatic cancer cells. J. Ethnopharmacol. 131, 78–82 (2010)

    Google Scholar 

  27. Y. He, S. Ingudam, S. Reed, A. Gehring, T.P. Strobaugh, P. Irwin, Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol. 14, 54 (2016)

    Google Scholar 

  28. J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S.I. Hong, green synthesis and characterization of hexagonal shaped MgO nanoparticles using insulin plant (Costus pictus d. Don) leave extract and Its antimicrobial as well as anticancer activity. Adv. Powder Technol. 29, 1685–169 (2018)

    CAS  Google Scholar 

  29. L. Peia, W. Yinb, J. Wanga, J. Chena, C. Fana, Q. Zhang, Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process. Mater. Res. 13, 339–343 (2010)

    Google Scholar 

  30. F. Al-Hazmi, F. Alnowaiser, A.A. Al-Ghamdi, A.A. Al-Ghamdi, M.M. Aly, R.M. Al-Tuwirqi, F. El-Tantawy, A new large—scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattices Microstruct. 52, 200–209 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. S.T. Fardood, A. Ramazani, S.W. Joo, Eco-friendly synthesis of magnesium oxide nanoparticles using arabic gum. J. Appl. Chem. 12, 8–15 (2018)

    Google Scholar 

  32. R. Coelhoa, P. Araujo, S. Quadros, F. Sousaa, Monteiro, Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopaedic infections. Mater. Sci. Eng. 97, 529–538 (2019)

    Google Scholar 

  33. B. Das, S. Moumita, S. Ghosh, M.I. Khan, D. Indira, R. Jayabalan, S.K. Tripathy, A. Mishra, P. Balasubramanian, Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. Mater. Sci. Eng. C 1(91), 436–44 (2018)

    Google Scholar 

  34. P.K. Elumalai, K. Kaleena, A. Ashok, M. Suresh, Hemavathi, Green synthesis of silver nanoparticle using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Eng. Agric. Environ. Food 9, 1–8 (2016)

    Google Scholar 

  35. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J. Photochem. Photobiol. B 190, 8–20 (2019)

    CAS  PubMed  Google Scholar 

  36. Y.Y. Abdallah, S.O. Ogunyemi, A. Abdelazez, M. Zhang, X. Hong, E. Ibrahim, A. Hossain, H. Fouad, B. Li, J. Chen, The green synthesis of mgo nano-flowers using Rosmarinus officinalis l. (rosemary) and the antibacterial activities against Xanthomonas oryzae pv. Oryzae. Biomed Res. Int. 8, 5620989 (2019)

    Google Scholar 

  37. N. John Sushma, D. Prathyusha, G. Swathi, T. Madhavi, B. Deva Prasad Raju, K. Mallikarjuna, Hak-Sung Kim, Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies, Appl Nanosci. 6, 437–444 (2016)

  38. J. Jeevanandam, Y.S. Chan, M.K. Danquah, Effect of ph variations on morphological transformation of biosynthesized mgo nanoparticles, particulate science and technology. Particul. Sci. Technol.0272–6351 (2019)

  39. G. Sharma, R. Soni, N.D. Jasuja, Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J. Taibah Univ. Sci. 11, 471–477 (2017)

    Google Scholar 

  40. K. Ramanujam, M. Sundrarajan, Antibacterial effects of biosynthesized MgO nanoparticles using ethanolic fruit extract of Emblica officinalis. J. Photochem. Photobiol. B 141, 296–300 (2014)

    CAS  PubMed  Google Scholar 

  41. K. Jhansi, N. Jayarambabu, K. Paul Reddy, N. Manohar Reddy, R. Padma Suvarna, K. Venkateswara Rao, V. Ramesh Kumar, V. Rajendar, Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination. Biotechnique 7, 263 (2017)

  42. J. Sackey, A.K.H. Bashir, A.E. Ameh, M. Nkosi, C. Kaonga, M. Maaza, Date pits extracts assisted synthesis of magnesium oxides nanoparticles and its application towards the photocatalytic degradation of methylene blue. J. King Saud Univ. Sci. 32, 2767–2776 (2020)

    Google Scholar 

  43. H.A. Maishera, F.A. Kuta, J.O. Tijani, N.U. Adabara, A.S. Adedeji, J.D. Bala, Biosynthesis and antibacterial potential of Tectona grandismediated magnesium oxide nanorods. J. Bio-Sci. 27, 109–120 (2019)

    Google Scholar 

  44. P.D. Shankar, S. Shobana, I. Karuppusamy, A. Pugazhendhi, V.S. Ramkumar, S. Arvindnarayan, G. Kumar, A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzyme Microb. Technol. 95, 28–44 (2016)

    CAS  PubMed  Google Scholar 

  45. S. Pavithra, B. Mohana, M. Mani, R. Jayavel, S. Kumaresan, Physicochemical and morphological properties of Achyranthes aspera mediated CuO nanoparticles for inhibiting cellular adhesion. J. Clust. Sci. (2020). https://doi.org/10.1007/s10876-020-01796-6

  46. L. Kumari, W. Li, C. Vannoy, R. Leblanc, D. Wang, Synthesis, characterization and optical properties of Mg (OH)2 micro-/nanostructure and its conversion to MgO. Ceram. Int. 35, 3355–3364 (2009)

    CAS  Google Scholar 

  47. K.G. Chandrappa, T.V. Venkatesha, B.M. Praveen, B.S. Shylesha, Generation of nanostructured MgO particles by solution phase method. Res. J. Chem. Sci. 5, 13–18 (2015)

    CAS  Google Scholar 

  48. J.M. Yousef, E.N. Danial, In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J. Health Sci. 2(4), 38–42 (2012)

    Google Scholar 

  49. L. Cai, J. Chen, Z. Liu, H. Wang, H. Yang, W. Ding, Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front. Microbiol. 9, 790 (2018)

    PubMed  PubMed Central  Google Scholar 

  50. K. Krishnamoorthy, G. Manivannan, S. Jae Kim, Kadarkaraithangam Jeyasubramanian, M. Premanathan, Antibacterial activity of mgo nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanoparticle Res. 14, 1063 (2012)

  51. X. Zhang, R. Zhou, P. Liu, L. Fu, X. Lan, G. Gong, Improvement of the antibacterial activity of nanocrystalline zinc oxide by doping Mg (II) Or Sb (III). Int. J. Appl. Ceram. Technol. 8(5), 1087–1098 (2011)

    CAS  Google Scholar 

  52. U.T. Khatoon, G.N. Rao, M.K. Mohan, A. Ramanaviciene, A. Ramanavicius, J. Environ. 6(5), 5837–5844 (2018)

    CAS  Google Scholar 

  53. U.T. Khatoon, G.N. Rao, M.K. Mohan, A. Ramanaviciene, A. Ramanavicius, Antibacterial and antifungal activity of silver nanospheres synthesized by tri-sodium citrate assisted chemical approach. Vacuum 146, 259–265 (2017)

    CAS  Google Scholar 

  54. L. Umaralikhan, M. Jamal Mohamed Jaffar, Green synthesis of MgO nanoparticles and it antibacterial activity. Iran. J. Sci. Technol. Trans. Sci. 42, 477–485 (2018)

  55. Y. Abdallah, S. O. Ogunyemi, A. Abdelazez, M. Zhang, X. Hong, E. Ibrahim, A. Hossain, H. Fouad, B. Li, J. Chen, The Green Synthesis of MgO Nano-Flowers Using Rosmarinus officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas oryzae pv. oryzae. BioMed Res. Int. 5620989 (2019).

  56. R. Rajeswari, H. Gurumallesh Prabu, Synthesis characterization, antimicrobial, antioxidant and cytotoxic activities of ZnO nanorods on reduced graphene oxide. J. Inorg. Organomet. Polym. 28, 679–693 (2017)

  57. O. Azizian-Shermeh, A. A. Jalali-Nezhad, M. Taherizadeh, A. Qasemi, Facile, Low-Cost and Rapid Phytosynthesis of Stable and Eco-friendly Silver Nanoparticles Using Boerhavia elegans (Choisy) and Study of Their Antimicrobial Activities. J Inorg Organomet Polym. 1 – 13 (2020).

Download references

Acknowledgements

The authors are grateful to Crystal Growth Centre, Anna University, Chennai, Tamil Nadu, India for enabling laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pavithra.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavithra, S., Mohana, B., Mani, M. et al. Bioengineered 2D Ultrathin Sharp-Edged MgO Nanosheets Using Achyranthes aspera Leaf Extract for Antimicrobial Applications. J Inorg Organomet Polym 31, 1120–1133 (2021). https://doi.org/10.1007/s10904-020-01772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01772-7

Keywords

Navigation