Skip to main content
Log in

Mesoporous Zn–Ti Mixed Oxide Nanostructure: A New Bifunctional Catalyst for Partial Oxidation and Bezylation Reactions

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Here, we report a facile synthesis of porous zinc-titanium oxide based mixed oxide nanoparticles having Zn/Ti molar ratio 1:2 based on evaporation-induced sol–gel route using Pluronic triblock copolymer P123 as a template. Use of volatile ethanolic media during the evaporation-induced self-assembly (EISA) method facilitates the formation of Zn–Ti mixed oxide heterostructure. Powder XRD data reveals that the composite material displayed ZnTiO3/TiO2 phases. Morphology, composition, porosity, nanostructure and thermal stability have been systematically investigated using small angle powder XRD, FE SEM-EDS, TEM, N2 sorption, FT IR and TG-DTA techniques. The observed BET surface area of Zn–Ti mixed oxide was 231 m2 g−1 with a typical mesopore diameter (~ 5 nm) mostly arising from interparticle void space. The Zn–Ti mixed oxide catalyst showed bifunctional activity for Friedel–Craft benzylation of aromatics using benzyl chloride as well as partial oxidation of olefins under mild reaction conditions using dilute aqueous H2O2 as oxidant.

Graphical Abstract

Zn–Ti based porous nanoparticles synthesized using Pluronic P123 copolymer surfactant via EISA method has shown a very high surface area of 231 m2 g−1 and a significant bifunctional role for liquid phase oxidation and benzylation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.F. Lu, H.Y. Fan, A. Stump, T.L. Ward, T. Rieker, C.J. Brinker, Nature 398, 223 (1999)

    Article  CAS  Google Scholar 

  2. Y. Zhou, M. Antonietti, J Am Chem Soc 125, 14960 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Y.S. Lin, C.L. Haynes, Chem Mater 21, 3979 (2009)

    Article  CAS  Google Scholar 

  4. C.S. Lei, M. Pi, C.J. Jiang, B. Cheng, J.G. Yu, J Colloid Interface Sci 490, 242 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. E. Doustkhah, H. Mohtasham, M. Hasani, Y. Ide, S. Rostamnia, N. Tsunoji, M. Hussein, N. Assadi, Mol Catal 482, 110676 (2020)

    Article  CAS  Google Scholar 

  6. A. Ahadi, H. Alamgholiloo, S. Rostamnia, X. Liu, M. Shokouhimehr, D.A. Alonso, R. Luque, ChemCatChem 11(19), 4803 (2019)

    Article  CAS  Google Scholar 

  7. A.G. Moaser, A. Ahadi, S. Rouhani, B.B. Mamba, T.A.M. Msagati, S. Rostamnia, T. Kavetskyy, S. Dugheri, S. Khaksar, A. Hasanzadeh, M. Shokouhimehr, J Mole Liq 312, 113388 (2020)

    Article  CAS  Google Scholar 

  8. A. Hasanzadeh, B. Gholipour, S. Rostamnia, A. Eftekhar, A. Tanomand, A. Valizadeh, K.S. Khaksar, R. Khalilov, J Colloid Interface Sci 585, 676 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. H. Alamgholiloo, S. Rostamnia, N.N. Pesyan, Appl Organomet Chem 34(4), e5452 (2020)

    Article  CAS  Google Scholar 

  10. E. Doustkhah, J. Lin, S. Rostamnia, C. Len, R. Luque, X. Luo, Y. Bando, K.C.-W. Wu, J. Kim, Y. Yamauchi, Y. Ide, Chem A Eur J 25(7), 1614 (2019)

    Article  CAS  Google Scholar 

  11. K. Patra, S.K. Das, A. Bhaumik, J Mater Chem 21(11), 3925 (2011)

    Article  CAS  Google Scholar 

  12. N. Chauhan, V. Singh, S. Kumar, M. Kumari, K. Sirohi, J Mol Struct 1185, 219 (2019)

    Article  CAS  Google Scholar 

  13. K. Polychronopoulou, A.F. Zedan, M.S. Katsiotis, M.A. Baker, A.A. AlKhoori, S.Y. AlQaradawi, S.J. Hinder, S. AlHassan, Mol Catal 428, 41 (2017)

    Article  CAS  Google Scholar 

  14. N. Pal, A. Bhaumik, Dalton Trans 41, 9161 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. G. Purohit, D.S. Rawat, ACS Sustain Chem Eng 7, 19235 (2019)

    Article  CAS  Google Scholar 

  16. X. Zhang, F. Zhang, K.Y. Chan, Appl Catal A Gen 284, 193 (2005)

    Article  CAS  Google Scholar 

  17. M. Pramanik, Y. Tsujimoto, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Chem Mater 27, 1082 (2015)

    Article  CAS  Google Scholar 

  18. M.U. Anu Prathap, B. Kaur, R. Srivastava, J Colloid Interface Sci 381(1), 143 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. N. Pal, M. Paul, A. Bhaumik, Appl Catal A Gen 393, 153 (2011)

    Article  CAS  Google Scholar 

  20. T. Sakai, P. Alexandridis, Langmuir 20, 8426 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, J Mol Catal A Chem 287(1–2), 70 (2008)

    Article  CAS  Google Scholar 

  22. J. Fan, S.W. Boettcher, G.D. Stucky, Chem Mater 18, 6391 (2006)

    Article  CAS  Google Scholar 

  23. M. Paul, N. Pal, B.S. Rana, A.K. Sinha, A. Bhaumik, Catal Commun 10, 2041 (2009)

    Article  CAS  Google Scholar 

  24. N. Pal, A. Bhaumik, Chem Phys Lett 535, 69 (2012)

    Article  CAS  Google Scholar 

  25. L.K. Munguti, F.B. Dejenec, Nano-Struct Nano-Objects 27, 100772 (2021)

    Article  CAS  Google Scholar 

  26. Y. Shen, K. Yin, C. An, Z. Xiao, Appl Surf Sci 456, 1 (2018)

    Article  CAS  Google Scholar 

  27. D.P. Dutta, A. Singh, A.K. Tyagi, J Environ Chem Eng 2, 2177 (2014)

    Article  CAS  Google Scholar 

  28. X. Jaramillo-Fierro, S. González, H.A. Jaramillo, F. Medina, Nanomaterials 10, 1891 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  29. K. Polychronopoulou, J.L.G. Fierro, A.M. Efstathiou, Appl Catal B Environ 57(2), 125 (2005)

    Article  CAS  Google Scholar 

  30. A. Pineda, N. Lazaro, A.M. Balu, A. Garcia, A.A. Romero, R. Luque, Mol Catal 493, 111092 (2020)

    Article  CAS  Google Scholar 

  31. L.Z. Wang, Q. Xiao, D. Zhang, W. Kuang, J.H. Huang, Y.N. Liu, A.C.S. Appl, Mater Interfaces 12, 36652 (2020)

    Article  CAS  Google Scholar 

  32. T. He, H.F.T. Klare, M. Oestreich, ACS Catal 11, 12186 (2021)

    Article  CAS  Google Scholar 

  33. J.Y. Xie, W.X. Zhuang, N. Yan, Y.H. Du, S.B. Xi, W. Zhang, J.J. Tang, Y. Zhou, J. Wang, Chem Eng J 328, 1031 (2017)

    Article  CAS  Google Scholar 

  34. J.G. Wang, H.J. Wang, T. Yokoi, T. Tatsumi, Microporous Mesoporous Mater 276, 207 (2019)

    Article  CAS  Google Scholar 

  35. C.J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv Mater 11(7), 579 (1999)

    Article  CAS  Google Scholar 

  36. N. Pal, Adv Colloid Interface Sci 280, 102156 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. M. Kruk, L. Cao, Langmuir 23(13), 7247 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. X. Hu, B.O. Skadtchenko, M. Trudeau, D.M. Antonelli, J Am Chem Soc 128, 11740 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. P.I. Ravikovitch, A.V. Neimark, J Phys Chem B 105, 6817 (2001)

    Article  CAS  Google Scholar 

  40. Y.-W. Wang, P.-H. Yuan, C.-M. Fan, Y. Wang, G.-Y. Ding, Y.-F. Wang, Ceram Int 38, 4173 (2012)

    Article  CAS  Google Scholar 

  41. L. Zhu, Q. Lu, L. Lv, Y. Wang, Y. Hu, Z. Deng, Z. Lou, Y. Hou, F. Teng, RSC Adv 7, 20084 (2017)

    Article  CAS  Google Scholar 

  42. J.M. Kisler, A. Dähler, G.W. Stevens, A.J. O’Connor, Microporous Mesoporous Mater 44–45, 769 (2001)

    Article  Google Scholar 

  43. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, J Am Chem Soc 121, 9611 (1999)

    Article  CAS  Google Scholar 

  44. N. Pal, M. Paul, A. Bhaumik, J Solid State Chem 184, 1805 (2011)

    Article  CAS  Google Scholar 

  45. D. Singh, P. Patidar, A. Ganesh, S. Mahajani, Ind Eng Chem Res 52, 14776 (2013)

    Article  CAS  Google Scholar 

  46. A. Vinu, D.P. Sawant, K. Ariga, M. Hartmann, S.B. Halligudi, Microporous Mesoporous Mater 80, 195 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. Pal conveys gratitude to R & D section of MGIT for supporting her research work. She also wishes to thank the Jadavpur University and Indian Association for the Cultivation of Science for the technical support to analyze her sample.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NP and DC. The first draft of the manuscript was written by NP and modified by AB. All authors commented on the manuscript modification. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nabanita Pal or Asim Bhaumik.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, N., Chakraborty, D., Bhaumik, A. et al. Mesoporous Zn–Ti Mixed Oxide Nanostructure: A New Bifunctional Catalyst for Partial Oxidation and Bezylation Reactions. J Inorg Organomet Polym 32, 3141–3152 (2022). https://doi.org/10.1007/s10904-022-02347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02347-4

Keywords

Navigation