Skip to main content
Log in

Statistical Measurement of Counterflow Turbulence in Superfluid Helium-4 Using \(\hbox {He}_2^*\) Tracer-Line Tracking Technique

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

An Erratum to this article was published on 15 February 2017

Abstract

We report preliminary results of a systematic study of the flow of normal fluid component in steady-state quantum turbulence in thermal counterflow of superfluid \(^{4}\hbox {He}\) using a high-precision flow visualisation technique based on the tracking of thin lines of \(\hbox {He}_2^{*}\) molecular tracers. Non-trivial profiles of mean velocity and turbulent fluctuation across the channel are observed with complicated temperature- and heat flux-dependencies. Mean turbulence intensity, however, depends on velocity only very weakly and is controlled primarily by the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.R. Tilley, J. Tilley, Superfluidity and Superconductivity (CRC Press, Boca Raton, 1994)

    MATH  Google Scholar 

  2. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 126, 167 (2002)

    Article  ADS  Google Scholar 

  3. L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24, 055109 (2012)

    Article  Google Scholar 

  4. W.F. Vinen, Proc. R. Soc. Lond. Ser. A 242, 493 (1957)

    Article  ADS  Google Scholar 

  5. W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Proc. Natl. Acad. Sci. USA 111, 4653 (2014)

    Article  ADS  Google Scholar 

  6. S.W.V. Sciver, S. Fuzier, T. Xu, J. Low Temp. Phys. 148, 225 (2007)

    Article  ADS  Google Scholar 

  7. T. Zhang, S.W.V. Sciver, Nat. Phys. 1, 36 (2005)

    Article  Google Scholar 

  8. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature 441, 588 (2006)

    Article  ADS  Google Scholar 

  9. M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D.P. Lathrop, J. Phys. Soc. Jpn. 77, 111007/1 (2008)

    Article  ADS  Google Scholar 

  10. M. La Mantia, L. Skrbek, EPL 106, 46002 (2014)

    Article  ADS  Google Scholar 

  11. M. La Mantia, L. Skrbek, Phys. Rev. B 90, 014519 (2014)

    Article  ADS  Google Scholar 

  12. D.R. Poole, C.F. Barenghi, Y.A. Sergeev, W.F. Vinen, Phys. Rev. B 71, 064514 (2005)

    Article  ADS  Google Scholar 

  13. E. Varga, C.F. Barenghi, Y.A. Sergeev, L. Skrbek, J. Low Temp. Phys 183, 215 (2016)

    Article  ADS  Google Scholar 

  14. D. Kivotides, Phys. Rev. B 77, 174508/1 (2008)

    ADS  Google Scholar 

  15. W. Guo, S. Cahn, J. Nikkel, W. Vinen, D. McKinsey, Phys. Rev. Lett. 105, 045301 (2010)

    Article  ADS  Google Scholar 

  16. W. Guo, J. Wright, S. Cahn, J. Nikkel, D. McKinsey, J. Low Temp. Phys. 158, 346 (2009)

    Article  ADS  Google Scholar 

  17. W. Guo, J. Wright, S. Cahn, J. Nikkel, D.N. McKinsey, Phys. Rev. Lett 102, 235301 (2009)

    Article  ADS  Google Scholar 

  18. J. Gao, A. Marakov, W. Guo, B. Pawlowski, S. Van Sciver, G. Ihas, D. McKinsey, W. Vinen, Rev. Sci. Instrum. 86, 093904 (2015)

    Article  ADS  Google Scholar 

  19. D.E. Zmeev, F. Pakpour, P.M. Walmsley, W.G.A.I. Golov, D.N. McKinsey, G.G. Ihas, P.V.E. McClintock, S.N. Fisher, W.F. Vinen, Phys. Rev. Lett. 110, 175303 (2013)

    Article  ADS  Google Scholar 

  20. J. Bominaar, M. Pashtrapanska, T. Elenbaas, N. Dam, H. ter Meulen, W. van de Water, Phys. Rev. E 77, 046312 (2008)

    Article  ADS  Google Scholar 

  21. A. Benderskii, J. Eloranta, R. Zadoyan, V. Apkarian, J. Chem. Phys. 117, 2101 (2002)

    Article  Google Scholar 

  22. D. McKinsey, C. Brome, J. Butterworth, S. Dzhosyuk, P. Huffman, C. Mattoni, J. Doyle, R. Golub, K. Habicht, Phys. Rev. A 59, 200 (1999)

    Article  ADS  Google Scholar 

  23. A.V. Benderskii, R. Zadoyan, N. Schwentner, V.A. Apkarianb, J. Chem. Phys. 110, 1542 (1999)

    Article  ADS  Google Scholar 

  24. A. Marakov, J. Gao, W. Guo, S.W.V. Sciver, G.G. Ihas, D.N. Mckinsey, W. Vinen, Phys. Rev. B 91, 094503 (2015)

    Article  ADS  Google Scholar 

  25. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27(6), 1217–1274 (1998)

    Article  ADS  Google Scholar 

  26. J. Gao, W. Guo, W.F. Vinen, Phys. Rev. B 94, 094502 (2016)

    Article  ADS  Google Scholar 

  27. A.W. Baggaley, J. Laurie, J. Low Temp. Phys. 178, 35–52 (2015)

Download references

Acknowledgments

J.G. and W.G. acknowledge the support from the US Department of Energy under Grant DE-FG02 96ER40952. E.V. acknowledges financial support from the Charles University in Prague and the hospitality of the National High Magnetic Field Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Varga.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10909-017-1758-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Varga, E., Guo, W. et al. Statistical Measurement of Counterflow Turbulence in Superfluid Helium-4 Using \(\hbox {He}_2^*\) Tracer-Line Tracking Technique. J Low Temp Phys 187, 490–496 (2017). https://doi.org/10.1007/s10909-016-1681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1681-y

Keywords

Navigation