Skip to main content
Log in

Breakdown of Zero-Energy Quantum Hall State in Graphene in the Light of Current Fluctuations and Shot Noise

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have investigated the cross-over from Zener tunneling of single charge carriers to avalanche type of bunched electron transport in a suspended graphene Corbino disk in the zeroth Landau level. At low bias, we find a tunneling current that follows the gyrotropic Zener tunneling behavior. At larger bias, we find an avalanche type of transport that sets in at a smaller current the larger the magnetic field is. The low-frequency noise indicates strong bunching of the electrons in the avalanches. On the basis of the measured low-frequency switching noise power, we deduce the characteristic switching rates of the avalanche sequence. The simultaneous microwave shot noise measurement also reveals intrinsic correlations within the avalanche pulses and indicate a decrease in correlations with increasing bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. However, there will be a peak in the noise power spectrum at the frequency corresponding to the inverse of the arrival period of the correlated charge carriers.

  2. Here one needs to remember that this approximation assumes white spectrum for the low-f noise.

  3. In regular 2-DEG heterostructure, an increase in the electron–phonon coupling by a factor of two is found between 2 and 9 T [41].

References

  1. A. Laitinen, M. Kumar, P.J. Hakonen, arXiv:1710.04137 (2017)

  2. Y.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  3. Z. Ezawa, Quantum Hall Effects Recent Theoretical and Experimental Developments, 3rd edn. (World Scientific, Singapore, 2013)

    Book  Google Scholar 

  4. A.J.M. Giesbers, L.A. Ponomarenko, K.S. Novoselov, A.K. Geim, J.C. Katsnelson, M.I. Maan, U. Zeitler, Phys. Rev. B 80, 201403(R) (2009)

    Article  ADS  Google Scholar 

  5. A.F. Young, C.R. Dean, L. Wang, H. Ren, P. Cadden-Zimansky, T. Watanabe, K. Taniguchi, J. Hone, K.L. Shepard, P. Kim, Nature Phys. 8, 550 (2012)

    Article  ADS  Google Scholar 

  6. C. Zener, Proc. R. Soc. Lond. A 145, 523 (1934)

    Article  ADS  Google Scholar 

  7. J. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1979)

    MATH  Google Scholar 

  8. G.E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 15, 116 (1972)

    Google Scholar 

  9. E.B. Sonin, Zh Eksp, Teor. Fiz. 64, 970 (1973)

    Google Scholar 

  10. E.B. Sonin, Dynamics of Quantised Vortices in Superfluids (Cambridge University Press, Cambridge, 2016)

    Book  MATH  Google Scholar 

  11. O. Heinonen, P.L. Taylor, S.M. Girvin, Phys. Rev. B 30, 3016 (1984)

    Article  ADS  Google Scholar 

  12. L. Eaves, P.S.S. Guimaraes, J.C. Portal, J. Phys. C 17, 6177 (1984)

    Article  ADS  Google Scholar 

  13. C.L. Yang, J. Zhang, R.R. Du, J.A. Simmons, J.L. Reno, Phys. Rev. Lett. 89, 076801 (2002)

    Article  ADS  Google Scholar 

  14. A.A. Bykov, D.V. Dmitriev, I.V. Marchishin, S. Byrnes, S.A. Vitkalov, Appl. Phys. Lett. 100, 251602 (2012)

    Article  ADS  Google Scholar 

  15. L. Bliek, G. Hein, D. Jucknischke, V. Kose, J. Niemeyer, G. Weimann, W. Schlapp, Surf. Sci. 196, 156 (1988)

    Article  ADS  Google Scholar 

  16. O. Makarovsky, A. Neumann, L.A. Dickinson, L. Eaves, P.C. Main, M. Henini, S. Thoms, C.D.W. Wilkinson, Phys. E 12, 178 (2002)

    Article  Google Scholar 

  17. C.L. Yang, M.A. Zudov, T.A. Knuuttila, R.R. Du, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 91, 096803 (2003)

    Article  ADS  Google Scholar 

  18. X. Liu, Y. Zhu, L. Du, C. Yang, L. Lu, L. Pfeiffer, K. West, R.R. Du, Appl. Phys. Lett. 105, 182110 (2014)

    Article  ADS  Google Scholar 

  19. A.V. Goran, I.S. Strygin, A.A. Bykov, JETP Lett. 96, 803 (2013)

    Article  ADS  Google Scholar 

  20. S. Komiyama, T. Takamasu, S. Hiyamizum, S. Sasa, Solid State Commun. 54, 479 (1985)

    Article  ADS  Google Scholar 

  21. G. Ebert, K. von Klitzing, K. Ploog, G. Weimann, J. Phys. C 16, 5441 (1983)

    Article  ADS  Google Scholar 

  22. M. Cage, R. Dziuba, B. Field, E. Williams, S. Girvin, A. Gossard, D. Tsui, R. Wagner, Phys. Rev. Lett. 51, 1374 (1983)

    Article  ADS  Google Scholar 

  23. G. Nachtwei, Phys. E 4, 79 (1999)

    Article  Google Scholar 

  24. S. Komiyama, Y. Kawaguchi, Phys. Rev. B 61, 2014 (2000)

    Article  ADS  Google Scholar 

  25. K. Chida, T. Hata, T. Arakawa, S. Matsuo, Y. Nishihara, T. Tanaka, T. Ono, K. Kobayashi, Phys. Rev. B 89, 1 (2014)

    Article  Google Scholar 

  26. T. Hata, T. Arakawa, K. Chida, S. Matsuo, K. Kobayashi, J. Phys. Condens. Matter 28, 055801 (2016)

    Article  ADS  Google Scholar 

  27. S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  28. M. Kumar, A. Laitinen, P.J. Hakonen, arXiv:1611.02742 (2016)

  29. Y. Huang, E. Sutter, N.N. Shi, J. Zheng, T. Yang, D. Englund, H.J. Gao, P. Sutter, ACS Nano 9, 10612 (2015)

    Article  Google Scholar 

  30. N. Tombros, A. Veligura, J. Junesch, J. Jasper van den Berg, P.J. Zomer, M. Wojtaszek, I.J. Vera Marun, H.T. Jonkman, B.J. van Wees, J. Appl. Phys. 109, 093702 (2011)

    Article  ADS  Google Scholar 

  31. A. Laitinen, M. Oksanen, A. Fay, D. Cox, M. Tomi, P. Virtanen, P.J. Hakonen, Nano Lett. 14, 3009 (2014)

    Article  ADS  Google Scholar 

  32. J. Gabelli, B. Reulet, Phys. Rev. B 80, 161203 (2009)

    Article  ADS  Google Scholar 

  33. E.D. Walsh, D.K. Efetov, G.H. Lee, M. Heuck, J. Crossno, T.A. Ohki, P. Kim, D. Englund, K.C. Fong, Phys. Rev. Appl. 8, 024022 (2017)

    Article  ADS  Google Scholar 

  34. F. Wu, L. Roschier, T. Tsuneta, M. Paalanen, T. Wang, P. Hakonen, AIP Conf. Proc. 850, 1482 (2006)

    Article  ADS  Google Scholar 

  35. F. Wu, P. Queipo, A. Nasibulin, T. Tsuneta, T. Wang, E. Kauppinen, P. Hakonen, Phys. Rev. Lett. 99, 156803 (2007)

    Article  ADS  Google Scholar 

  36. R. Danneau, F. Wu, M.F. Craciun, S. Russo, M.Y. Tomi, J. Salmilehto, A.F. Morpurgo, P.J. Hakonen, J. Low Temp. Phys. 153, 374 (2008)

    Article  ADS  Google Scholar 

  37. T. Nieminen, P. Lähteenmäki, Z. Tan, D. Cox, P.J. Hakonen, Rev. Sci. Instrum. 87, 114706 (2016)

    Article  ADS  Google Scholar 

  38. A. Rycerz, P. Recher, M. Wimmer, Phys. Rev. B 80, 125417 (2009)

    Article  ADS  Google Scholar 

  39. M. Kumar, A. Laitinen, D. Cox, P.J. Hakonen, Appl. Phys. Lett. 106, 263505 (2015)

    Article  ADS  Google Scholar 

  40. F. von Oppen, Phys. Rev. B 56, 9674 (1997)

    Article  ADS  Google Scholar 

  41. M. Prasad, M. Singh, Phys. Rev. B 29, 4803 (1984)

    Article  ADS  Google Scholar 

  42. D.S. Golubev, A.D. Zaikin, Phys. Rev. B 70, 165423 (2004)

    Article  ADS  Google Scholar 

  43. V.A. Sverdlov, D.M. Kaplan, A.N. Korotkov, K.K. Likharev, Phys. Rev. B 64, 041302 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Flindt, A. Harju, T. Ojanen, S. Paraoanu, and B. Plaçais, for fruitful discussions. This work has been supported in part by the EU Framework Programme (FP7 and H2020 Graphene Flagship), by ERC (Grant No. 670743), and by the Academy of Finland (Project No. 250280 LTQ CoE). A.L. is grateful to Vaisälä Foundation of the Finnish Academy of Science and Letters for a scholarship. This research project made use of the Aalto University OtaNano/LTL infrastructure which is part of European Microkelvin Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Laitinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laitinen, A., Kumar, M., Elo, T. et al. Breakdown of Zero-Energy Quantum Hall State in Graphene in the Light of Current Fluctuations and Shot Noise. J Low Temp Phys 191, 272–287 (2018). https://doi.org/10.1007/s10909-018-1855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1855-x

Keywords

Navigation