Skip to main content

Advertisement

Log in

Microstructural Reinforcement in the Canine Enamel of the Hyaenid Crocuta crocuta, the FelidPuma concolorand the Late Miocene Canid Borophagus secundus

  • Mammalian Enamel Microstructure
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

In bone-eating carnivores such as the hyena Crocuta crocuta, the tooth enamel contains a secondary vertical prism decussation phyletically derived from the wavelike horizontal decussation of primitive carnivores. The structure resists fracture under vertical, oblique, and horizontal tensile stresses, owing to the following modifications of the primitive structure. Positions of wave crests and of wave troughs are synchronized in the vertically successive layers of decussating prisms. Prisms in each successive layer run in a common direction at the crests and in a common but reversed direction at the troughs. Between the crests and troughs, prisms in obliquely slanting layers often retain their primitively reversed prism directions. Near the enamel–dentine junction (EDJ), irregular horizontal decussation is retained. In the upper canine of C. crocuta, a consumer of large bones, secondary vertical decussation is largely confined to the labial and anterior sides of the crown toward the tip where modeling of the static stresses predicts the tensile stresses to be highest and aligned vertically. In Puma concolor, which does not consume large bones, secondary vertical decussation is absent, indicating stress magnitude to be a critical factor in the selection for secondary vertical decussation. The canine enamel in Borophagus secundus, an extinct canid with derived aspects of skull and dental shape like those in hyenas, has dental structures similar to those in C. crocuta but which differ in several ways. The wavelike shapes of the decussation planes are better developed in transverse sections in B. secundus than in C. crocuta, suggesting either the folds are less modified or they dip at a steeper angle. Secondary vertical decussation in B. secundus is more extensive around the circumference of the canine than in C. crocuta, related to a difference in cross-sectional shape of the tooth. Vertical prism decussation may have been more frequently attained in carnivorous mammals than in ungulates because of the more random orientation of dental stresses which creates a selective advantage for wavy decussation planes—a structural transition to vertical decussation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biknevicius, A. R., and Ruff, C. B. (1992). The structure of the mandibular corpus and its relationship to feeding behaviors in extant carnivorans. J. Zool. 228: 479–507.

    Google Scholar 

  • Boyde, A. (1976). Enamel structure and cavity margins. Operat. Dent. 1: 13–28.

    Google Scholar 

  • Boyde, A., and Fortelius, M. (1986). Development, structure and function of rhinoceros enamel. Zool. J. Linn. Soc. 87: 181–214.

    Google Scholar 

  • Brain, C. K. (1981). The Hunters or the Hunted? An Introduction to African Cave Taphonomy, University of Chicago Press, Chicago.

    Google Scholar 

  • Cook, J., and Gordon, J. E. (1964). A mechanism for the control of crack propagation in all-brittle systems. Proc. R. Soc. Lond. Ser. A 282: 508–520.

    Google Scholar 

  • Cope, E. D. (1892). A hyaena and other Carnivora from Texas. Proc. Natl. Acad. Sci. U.S.A. 44: 326–327.

    Google Scholar 

  • Currey, J. (1984). The Mechanical Adaptations of Bones, Princeton University Press, Princeton.

    Google Scholar 

  • Ferretti, M. P. (1999). Tooth enamel structure in the hyaenid Chasmaporthetes lunensis lunensis from the late Pliocene of Italy, with implications for feeding behavior. J. Vertebr. Paleontol. 19: 767–770.

    Article  Google Scholar 

  • Fortelius, M. (1985). Ungulate cheek teeth: Developmental, functional, and evolutionary inter-relations. Acta Zool. Fenn. 180: 1–76.

    Google Scholar 

  • Galiano, H., and Frailey, D. (1977). Chasmaporthetes kani, new species from China, with remarks on phylogenetic relationships of genera within the Hyaenidae (Mammalia, Carnivora). Am. Mus. Novit. 2632.

  • Kalthoff, D. C. (2000). Die Schmelzmikrostruktur in den Incisiven der hamsterartigen Nagetiere und anderer Myomorpha (Rodentia, Mammalia). Palaeontographica A259: 1–193.

    Google Scholar 

  • Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976). Introduction to Ceramics, Wiley, New York.

    Google Scholar 

  • Koenigswald, W. V. (1980). Schmelzstruktur und Morphologie in den Molaren der Arvicolidae (Rodentia). Abh. Senckenb. naturforsch. Ges. 539: 1–129.

    Google Scholar 

  • Koenigswald, W. V. (1992). Tooth enamel of the cave bear (Ursus spelaeus) and the relationship between diet and enamel structures. Ann. Zool. Fenn. 28: 217–227.

    Google Scholar 

  • Koenigswald, W. V. (1994). Differenzierungen im Zahnschmelz der Marsupialia im Vergleich zu den Verhältnissen bei den Placentalia (Mammalia). Berliner Geowiss. Abh. E13: 45–81.

    Google Scholar 

  • Koenigswald, W. V. (1997). Evolutionary trends in the differentiation of mammalian enamel ultrastructure. In: Tooth Enamel Microstructure, W. V. Koenigswald and P. M. Sander, eds., pp. 203–235, Balkema, Rotterdam.

    Google Scholar 

  • Koenigswald, W. V. (2004). The three basic types of schmelzmuster in fossil and extant rodent molars and their distribution among rodent clades. Palaeontographica A270: 95–132.

    Google Scholar 

  • Koenigswald, W. V., Rensberger, J. M., and Pfretzschner, H. U. (1987). Changes in the tooth enamel of early Paleocene mammals allowing dietary diversity. Nature 328: 150–152.

    Article  Google Scholar 

  • Korvenkontio, V. A. (1934). Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelzstruktur der Backenzähne. Ann. Zool. Soc. Zool.-Bot. Fennicae Vanamo 2: 1–274.

    Google Scholar 

  • Kozawa, Y., and Suzuki, K. (1995). Appearance of new characteristic features of tooth structure in the evolution of molar teeth of Equoidea and Proboscidea. In: Aspects of Dental Biology: Palaeontology, Anthropology and Evolution, J. Moggi-Cecchi, ed., pp. 27–31, International Institute for the Study of Man, Florence.

  • Lanyon, L. E., and Rubin, C. T. (1985). Functional adaptation in skeletal structures. In: Functional Vertebrate Morphology, M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake, eds., pp. 1–25, Belknap Press of Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Martin, T. (1997). Incisor enamel microstructure and systematics in rodents. In: Tooth Enamel Microstructure, W. V. Koenigswald and P. M. Sander, eds., pp. 163–175, Balkema, Rotterdam.

    Google Scholar 

  • Matthew, W. D., and Stirton, R. A. (1930). Osteology and affinities of Borophagus. Univ. Calif. Publ. Bull. Geol. Sci. 19: 171–216.

    Google Scholar 

  • Munthe, K. (1998). Canidae. In: Evolution of Tertiary Mammals of North America, Vol. 1, C. M. Janis, K. M. Scott, and L. L. Jacobs, eds., pp. 124–143, Cambridge University Press, New York.

    Google Scholar 

  • Parker, E. R. (1957). Brittle Behavior of Engineering Structures, Wiley, New York.

    Google Scholar 

  • Pfretzschner, H. U. (1988). Structural reinforcement and crack propagation in enamel. In: Teeth Revisited—Proceedings of the VIIth International Symposium on Dental Morphology, Paris, D. E. Russell, J.-P. Santoro, and D. Sigogneau-Russell, eds., Mém. Mus. Natl. d'Hist. Nat., Paris (C) 53: 133–143.

  • Pfretzschner, H. U. (1992). Enamel microstructure and hypsodonty in large mammals. In: Structure, Function and Evolution of Teeth, P. Smith and E. Tchernov, eds., pp. 147–162, Freund Publishing House, London and Tel Aviv.

    Google Scholar 

  • Pfretzschner H. U. (1993). Enamel microstructure in the phylogeny of the Equidae. J. Vertebr. Paleontol. 13: 342–349.

    Article  Google Scholar 

  • Rasmussen S. T., Patchin, R. E., Scott, D. B., and Heuer, H. H. (1976). Fracture properties of human enamel and dentin. J. Dent. Res. 55: 154–164.

    PubMed  CAS  Google Scholar 

  • Rensberger, J. M. (1987). Cracks in fossil enamels resulting from premortem vs. postmortem events. Scann. Microsc. 1: 631–645.

    CAS  Google Scholar 

  • Rensberger, J. M. (1992). Relationship of chewing stress and enamel microstructure in rhinocerotoid cheek teeth. In: Structure, Function and Evolution of Teeth, P. Smith and E. Tchernov, eds., pp. 163–183, Freund Publishing House, London and Tel Aviv.

    Google Scholar 

  • Rensberger, J. M. (1993). Adaptation of enamel microstructure to differences in stress intensity in the Eocene perissodactyl Hyracotherium. In: Structure, Formation and Evolution of Fossil Hard Tissues, I. Kobayashi, H. Mutvei, and A. Sahni, eds., pp. 131–145, Tokai University Press, Tokyo.

    Google Scholar 

  • Rensberger, J. M. (1995a). Determination of stresses in mammalian dental enamel and their relevance to the interpretation of feeding behaviors in extinct taxa. In: Functional Morphology in Vertebrate Paleontology, J Thomason, ed., pp. 151–172, Cambridge University Press, New York.

    Google Scholar 

  • Rensberger, J. M. (1995b). Relationship of chewing stresses to 3-dimensional geometry of enamel microstructure in rhinocerotoids. In: Aspects of Dental Biology: Palaeontology, Anthropology and Evolution, Moggi-Cecchi, ed., pp. 129–146, International Institute for the Study of Man, Florence.

  • Rensberger, J. M. (1995c). Enamel specialization in hyenas—A structure useful for assessing bone-eating behavior in carnivorous mammals. J. Paleontol. 15: 49A.

    Google Scholar 

  • Rensberger, J. M. (2000). Pathways to functional differentiation in mammalian enamel. In: Development, Function and Evolution of Teeth, M. F. Teaford, M. M. Smith, and M. W. J. Ferguson, eds., pp. 252–268, Cambridge University Press, New York.

    Google Scholar 

  • Rensberger, J. M. (2004). Evidence from the enamel microstructure for reversals in dietary behavior in the transition from primitive Ceratomorpha to Rhinocerotoidea. In: Fanfare for an Uncommon Paleontologist: Papers in Honor of Malcolm C. McKenna, Mary R. Dawson and Jason A. Lillegraven, eds., Bull. Carnegie Mus. Nat. Hist. 36: 199–210.

  • Rensberger, J. M., and Koenigswald, W. V. (1980). Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology 6: 477–495.

    Google Scholar 

  • Rensberger, J. M., and Pfretzschner, H. U. (1992). Enamel structure in astrapotheres and its functional implications. Scann. Microsc. 6: 495–510.

    CAS  Google Scholar 

  • Richy, K. A. (1979). Variation and evolution in the premolar teeth of Osteoborus and Borophagus (Canidae). Trans. Nebr. Acad. Sci. 7: 105–123.

    Google Scholar 

  • Schaffler, M. B., and Burr, D. B. (1988). Stiffness of compact bone: Effects of porosity and density. J. Biomech. 21: 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Stefen, C. (1997a). Differentiations in Hunter–Schreger bands of carnivores. In: Tooth Enamel Microstructure, W. V. Koenigswald and P. M. Sander, eds., pp. 123–136, Balkema, Rotterdam.

    Google Scholar 

  • Stefen, C. (1997b). The enamel of Creodonta, Arctocyonidae and Mesonychidae (Mammalia) with special reference to the appearance of Hunter–Schreger bands. Paläeontol. Zeitsch. 71: 291–303.

    Google Scholar 

  • Stefen, C. (1999). Enamel microstructure of Recent and fossil Canidae (Carnivora: Mammalia). {J. Vertebr. Paleontol.} 19: 576–587.

    Article  Google Scholar 

  • Stefen, C., and Rensberger, J. M. (2002). The specialized enamel structure of hyaenids (Mammalia, Hyaenidae): Description and development within the lineage—including percrocutids. Zool. Abh. 52: 127–147.

    Google Scholar 

  • Tedford, R. H., Taylor, B. E., and Wang, X. (1995). Phylogeny of the Caninae (Carnivora: Canidae): The living taxa. Am. Mus. Novit. 3146: 1–37.

    Google Scholar 

  • Van Valkenburgh, B. (1988). Incidence of tooth breakage among large predatory mammals. Am. Nat. 131: 291–302.

    Google Scholar 

  • Van Valkenburgh, B. (1996). Feeding behavior in free-ranging, large African carnivores. J. Mammal. 77: 240–254.

    Google Scholar 

  • Van Valkenburgh, B., and Ruff, C.B. (1987). Canine tooth strength and killing behaviour in large carnivores. J. Zool. (Lond.) 212: 1–19.

    Google Scholar 

  • Van Valkenburgh, B., Sacco, T., and Wang, X. (2003). Pack hunting in Miocene borophagine dogs: Evidence from craniodental morphology and body size. Bull. Am. Mus. Nat. Hist. 279: 147–162.

    Google Scholar 

  • Van Valkenburgh, B., Teaford, M. F., and Walker, A. (1990). Molar microwear and diet in large carnivores: Inferences concerning diet in the sabretooth cat, Smilodon fatalis. J. Zool. (Lond.) 222: 319–340.

    Google Scholar 

  • Wahlert, J. H. (1968). Variability of rodent incisor enamel as viewed in thin section, and the microstructure of the enamel in fossil and recent rodent groups. Breviora 309: 1–18.

    Google Scholar 

  • Wang, X. (1994). Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bull. Am. Mus. Nat. Hist. 221: 1–207.

    Google Scholar 

  • Wang, X., Tedford, R., and Taylor, B. (1999). Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bull. Am. Mus. Nat. Hist. 243: 1–391.

    Google Scholar 

  • Werdelin, L. (1989). Constraint and adaptation in the bone-cracking canid Osteoborus (Mammalia: Canidae). Paleobiology 15: 387–401.

    Google Scholar 

  • Werdelin, L., and Solounias, N. (1991). The Hyaenidae: Taxonomy, systematics and evolution. Fossils Strata 30: 1–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Rensberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rensberger, J.M., Wang, X. Microstructural Reinforcement in the Canine Enamel of the Hyaenid Crocuta crocuta, the FelidPuma concolorand the Late Miocene Canid Borophagus secundus . J Mammal Evol 12, 379–403 (2005). https://doi.org/10.1007/s10914-005-6964-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-005-6964-z

Key Words

Navigation