Skip to main content
Log in

Numerical Approximations and Error Analysis of the Cahn–Hilliard Equation with Reaction Rate Dependent Dynamic Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider numerical approximations and error analysis for the Cahn–Hilliard equation with reaction rate dependent dynamic boundary conditions (Knopf et al. ESAIM Math Model Numer Anal 55(1):229–282, 2021). Based on the stabilized linearly implicit approach, a first-order in time, linear and energy stable scheme for solving this model is proposed. The corresponding semi-discretized-in-time error estimates for the scheme are also derived. Numerical experiments, including the simulations with different energy potentials, the comparison with the former work, the convergence results for the relaxation parameter \(K\rightarrow 0\) and \(K\rightarrow \infty \) and the accuracy tests with respect to the time step size, are performed to validate the accuracy of the proposed scheme and the error analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bao, X., Zhang, H.: Numerical approximations and error analysis of the Cahn–Hilliard equation with dynamic boundary conditions. Preprint: arXiv:2006.05391 [math.NA] (2020)

  2. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2, 205–245 (1958)

    MATH  Google Scholar 

  3. Cherfils, L., Petcu, M., Pierre, M.: A numerical analysis of the Cahn–Hilliard equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 27, 1511–1533 (2010)

    Article  MathSciNet  Google Scholar 

  4. Cherfils, L., Petcu, M.: A numerical analysis of the Cahn–Hilliard equation with non-permeable walls. Numer. Math. 128, 517–549 (2014)

    Article  MathSciNet  Google Scholar 

  5. Colli, P., Fukao, T.: Cahn–Hilliard equation with dynamic boundary conditions and mass constraint on the boundary. J. Math. Anal. Appl. 429, 1190–1213 (2015)

    Article  MathSciNet  Google Scholar 

  6. Colli, P., Gilardi, G., Nakayashiki, R., Shirakawa, K.: A class of quasi-linear Allen–Cahn type equations with dynamic boundary conditions. Nonlinear Anal. 158, 32–59 (2017)

    Article  MathSciNet  Google Scholar 

  7. Fischer, H.P., Maass, P., Dieterich, W.: Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79, 893–896 (1997)

    Article  Google Scholar 

  8. Fischer, H.P., Reinhard, J., Dieterich, W., Gouyet, J.F., Maass, P., Majhofer, A., Reinel, D.: Timedependent density functional theory and the kinetics of lattice gas systems in contact with a wall. J. Chem. Phys. 108, 3028–3037 (1998)

    Article  Google Scholar 

  9. Fukao, T., Yoshikawa, S., Wada, S.: Structure-preserving finite difference schemes for the Cahn–Hilliard equation with dynamic boundary conditions in the one-dimensional case. Commun. Pure Appl. Anal. 16, 1915–1938 (2017)

    Article  MathSciNet  Google Scholar 

  10. Gal, C.G.: A Cahn–Hilliard model in bounded domains with permeable walls. Math. Methods Appl. Sci. 29, 2009–2036 (2006)

    Article  MathSciNet  Google Scholar 

  11. Garcke, H., Knopf, P.: Weak solutions of the Cahn–Hilliard system with dynamic boundary conditions: a gradient flow approach. SIAM J. Math. Anal. 52, 340–369 (2020)

    Article  MathSciNet  Google Scholar 

  12. Goldstein, G.R., Miranville, A., Schimperna, G.: A Cahn–Hilliard model in a domain with nonpermeable walls. Physica D 240, 754–766 (2011)

    Article  MathSciNet  Google Scholar 

  13. Gong, Y.Z., Zhao, J., Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys. 419, 109610 (2020)

    Article  MathSciNet  Google Scholar 

  14. Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51, 3036–3061 (2013)

    Article  MathSciNet  Google Scholar 

  15. He, Y.N., Liu, Y.X., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)

    Article  MathSciNet  Google Scholar 

  16. Israel, H., Miranville, A., Petcu, M.: Numerical analysis of a Cahn–Hilliard type equation with dynamic boundary conditions. Ricerche Mat. 64, 25–50 (2015)

    Article  MathSciNet  Google Scholar 

  17. Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dietrich, W.: Phase separation in confined geometries: solving the Cahn–Hilliard equation with generic boundary conditions. Comput. Phys. Comm. 133, 139–157 (2001)

    Article  MathSciNet  Google Scholar 

  18. Knopf, P., Lam, K.F.: Convergence of a Robin boundary approximation for a Cahn–Hilliard system with dynamic boundary conditions. Nonlinearity 33(8), 4191–4235 (2020)

  19. Knopf, P., Lam, K.F., Liu, C., Metzger, S.: Phase-field dynamics with transfer of materials: the Cahn–Hillard equation with reaction rate dependent dynamic boundary conditions. ESAIM Math. Model. Numer. Anal. 55(1), 229–282 (2021)

  20. Liu, C., Wu, H.: An energetic variational approach for the Cahn–Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis. Arch. Ration. Mech. Anal. 233, 167–247 (2019)

    Article  MathSciNet  Google Scholar 

  21. Metzger S.: An efficient and convergent finite element scheme for Cahn–Hilliard equations with dynamic boundary conditions. Preprint arXiv: 1908.04910 [math.NA] (2019)

  22. Mininni, R.M., Miranville, A., Romanelli, S.: Higher-order Cahn–Hilliard equations with dynamic boundary conditions. J. Math. Anal. Appl. 449, 1321–1339 (2017)

    Article  MathSciNet  Google Scholar 

  23. Racke, R., Zheng, S.: The Cahn–Hilliard equation with dynamic boundary conditions. Adv. Differ. Equ. 8, 83–110 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Shen, J., Wang, C., Wang, X.M., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  Google Scholar 

  25. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  26. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  27. Thompson, P.A., Robbins, M.O.: Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989)

    Article  Google Scholar 

  28. Trautwein, D.: Finite-Elemente Approximation der Cahn-Hilliard-Gleichung mit Neumann-und dynamischen Randbedingungen. Bachelor thesis, University of Regensburg (2018)

  29. Wu, H., Zheng, S.: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions. J. Differ. Equ. 204, 511–531 (2004)

    Article  MathSciNet  Google Scholar 

  30. Yang, X.F.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  Google Scholar 

  31. Yang, X.F., Zhao, J., He, X.M.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn–Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)

    Article  MathSciNet  Google Scholar 

  32. Yang, X.F., Zhao, J.: Efficient linear schemes for the nonlocal Cahn–Hilliard equation of phase field models. Comput. Phys. Commun. 235, 234–245 (2019)

    Article  MathSciNet  Google Scholar 

  33. Yang, X.F., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn–Hilliard type equation with logarithmic Flory–Huggins potential. Commun. Comput. Phys. 25, 703–728 (2019)

    MathSciNet  Google Scholar 

  34. Zhao, J., Yang, X.F., Gong, Y.Z., Zhao, X.P., Yang, X.G., Li, J., Wang, Q.: A general strategy for numerical approximations of non-equilibrium models-part I: thermodynamical systems. Int. J. Numer. Anal. Model. 15(6), 884–918 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Chun Liu for some useful discussions on the subject of this article. X. Bao is thankful to Prof. Chun Liu, Prof. Yiwei Wang, Prof. Qing Cheng and Prof. Tengfei Zhang for some stimulating discussions during the visit of Illinois Institute of Technology. X. Bao is also grateful to the Department of Applied Mathematics of Illinois Institute of Technology for the hospitality. X. Bao is partially supported by China Scholarship Council (No. 201906040019). H. Zhang is partially supported by the National Natural Science Foundation of China (Nos. 11971002 and 11471046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelian Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Zhang, H. Numerical Approximations and Error Analysis of the Cahn–Hilliard Equation with Reaction Rate Dependent Dynamic Boundary Conditions. J Sci Comput 87, 72 (2021). https://doi.org/10.1007/s10915-021-01475-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01475-2

Keywords

Navigation