Skip to main content
Log in

Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We design and analyze a coupling of a discontinuous Galerkin finite element method with a boundary element method to solve the Helmholtz equation with variable coefficients in three dimensions. The coupling is realized with a mortar variable that is related to an impedance trace on a smooth interface. The method obtained has a block structure with nonsingular subblocks. We prove quasi-optimality of the \(h\)- and \(p\)-versions of the scheme, under a threshold condition on the approximability properties of the discrete spaces. Amongst others, an essential tool in the analysis is a novel discontinuous-to-continuous reconstruction operator on tetrahedral meshes with curved faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. Enquiries about data availability should be directed to the authors.

References

  1. Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198(1), 106–130 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J.M., Praetorius, D.: Local inverse estimates for non-local boundary integral operators. Math. Comput. 86(308), 2651–2686 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. BEM++. Available at https://www.bempp.com/

  4. Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26(5), 1212–1240 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burman, E., Ern, A.: Continuous interior penalty \(hp\)-finite element methods for advection and advection–diffusion equations. Math. Comput. 76(259), 1119–1140 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bustinza, R., Gatica, G.N., Sayas, F.-J.: On the coupling of local discontinuous Galerkin and boundary element methods for non-linear exterior transmission problems. IMA J. Numer. Anal. 28(2), 225–244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, H., Lu, P., Xu, X.: A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number. SIAM J. Numer. Anal. 51(4), 2166–2188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Guzmán, J., Sayas, F.-J.: Coupling of Raviart–Thomas and hybridizable discontinuous Galerkin methods with BEM. SIAM J. Numer. Anal. 50(5), 2778–2801 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Sayas, F.-J.: The devising of symmetric couplings of boundary element and discontinuous Galerkin methods. IMA J. Numer. Anal. 32(3), 765–794 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Costabel, M.: A symmetric method for the coupling of finite elements and boundary elements. In: Whiteman, J.R. (ed.) The Mathematics of Finite Elements and Applications. VI (Uxbridge, 1987), pp. 281–288. Academic Press, London (1988)

    Google Scholar 

  14. Cui, J., Zhang, W.: An analysis of HDG methods for the Helmholtz equation. IMA J. Numer. Anal. 34(1), 279–295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Demkowicz, L., Gopalakrishnan, J., Muga, I., Zitelli, J.: Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Eng. 213(216), 126–138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Desiderio, L., Falletta, S., Scuderi, L.: A virtual element method coupled with a boundary integral non reflecting condition for 2D exterior Helmholtz problems. Comput. Math. Appl. 84, 296–313 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Du, Y., Zhu, L.: Preasymptotic error analysis of high order interior penalty discontinuous Galerkin methods for the Helmholtz equation with high wave number. J. Sci. Comput. 67(1), 130–152 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Erath, C.: Coupling of the Finite Volume Method and the Boundary Element Method—Theory, Analysis, and Numerics. PhD thesis, University of Ulm (2010)

  19. Erath, C.: Coupling of the finite volume element method and the boundary element method: an a priori convergence result. SIAM J. Numer. Anal. 50(2), 574–594 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Erath, C.: A new conservative numerical scheme for flow problems on unstructured grids and unbounded domains. J. Comput. Phys. 245, 476–492 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47(4), 2872–2896 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feng, X., Wu, H.: \(hp\)-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 80(276), 1997–2024 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, X., Xing, Y.: Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 82(283), 1269–1296 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gatica, G.N., Heuer, N., Sayas, F.-J.: A direct coupling of local discontinuous Galerkin and boundary element methods. Math. Comput. 79(271), 1369–1394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gatica, G.N., Meddahi, S.: Coupling of virtual element and boundary element methods for the solution of acoustic scattering problems. J. Numer. Math. 28(4), 223–245 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gatica, G.N., Sayas, F.-J.: An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods. Math. Comput. 75(256), 1675–1696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gittelson, C.J., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the \(h\)-version. ESAIM Math. Model. Numer. Anal. 43(2), 297–331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gopalakrishnan, J., Muga, I., Olivares, N.: Dispersive and dissipative errors in the DPG method with scaled norms for Helmholtz equation. SIAM J. Sci. Comput. 36(1), A20–A39 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Griesmaier, R., Monk, P.: Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Sci. Comput. 49(3), 291–310 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grigoroscuta-Strugaru, M., Amara, M., Calandra, H., Djellouli, R.: A modified discontinuous Galerkin method for solving efficiently Helmholtz problems. Commun. Comput. Phys. 11(2), 335–350 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. H2Lib. Available at http://www.h2lib.org/

  32. Han, H.: A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8(3), 223–232 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Heuer, N., Sayas, F.-J.: Analysis of a non-symmetric coupling of interior penalty DG and BEM. Math. Comput. 84(292), 581–598 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the \(p\)-version. SIAM J. Numer. Anal. 49(1), 264–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hiptmair, R., Perugia, I.: Mixed plane wave discontinuous Galerkin methods. In: Domain Decomposition Methods in Science and Engineering XVIII, Volume 70 of Lecture Notes in Computer Sciences and Engineering, pp. 51–62. Springer, Berlin (2009)

  36. Houston, P., Schötzau, D., Wihler, T.P.: Energy norm a posteriori error estimation of \(hp\)-adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17(1), 33–62 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60(1–2), 19–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Löhndorf, M., Melenk, J.M.: Wavenumber-explicit \(hp\)-BEM for high frequency scattering. SIAM J. Numer. Anal. 49(6), 2340–2363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mascotto, L., Melenk, J.M., Perugia, I., Rieder, A.: FEM-BEM mortar coupling for the Helmholtz equation in three dimensions. Comput. Math. Appl. 80(11), 2351–2378 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. McLean, W.C.H.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  42. Melenk, J.M.: \(hp\) Finite Element Methods for Singular Perturbations, Volume 1796 of Lecture Notes in Mathematics. Springer, Berlin (2002)

    Google Scholar 

  43. Melenk, J.M.: Mapping properties of combined field Helmholtz boundary integral operators. SIAM J. Math. Anal. 44(4), 2599–2636 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Melenk, J.M., Parsania, A., Sauter, S.: General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput. 57(3), 536–581 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Melenk, J.M., Praetorius, D., Wohlmuth, B.: Simultaneous quasi-optimal convergence rates in FEM-BEM coupling. Math. Methods Appl. Sci. 40(2), 463–485 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Melenk, J.M., Sauter, S.: Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comput. 79(272), 1871–1914 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for finite element discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49, 1210–1243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Netgen/NGSolve. Available at https://www.ngsolve.org/

  49. Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  50. Of, G., Rodin, G.J., Steinbach, O., Taus, M.: Coupling of discontinuous Galerkin finite element and boundary element methods. SIAM J. Sci. Comput. 34(3), A1659–A1677 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sauter, S.A., Schwab, C.: Boundary element methods. In: Boundary Element Methods, pp. 183–287. Springer, Berlin (2010)

  52. Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28(128), 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  53. Schwab, C.: \(p\)- and \(hp\)- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  54. Śmigaj, W., Betcke, T., Arridge, S., Phillips, J., Schweiger, M.: Solving boundary integral problems with BEM++. ACM Trans. Math. Softw. 41(2), 6 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer, New York (2008). (Finite and boundary elements, Translated from the 2003 German original)

  56. Zhao, L., Park, E.-J., Chung, E.T.: Staggered discontinuous Galerkin methods for the Helmholtz equation with large wave number. Comput. Math. Appl. 80(12), 2676–2690 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Jens M. Melenk, Ilaria Perugia, and Alexander Rieder gratefully acknowledge funding by the Austrian Science Fund (FWF) through the Project F 65 “Taming Complexity in Partial Differential System”. Ilaria Perugia, and Alexander Rieder also acknowledge funding by the FWF through the Project P 29197-N32. Lorenzo Mascotto, Ilaria Perugia, and Alexander Rieder acknowledge support from the FWF Project P33477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Mascotto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Consistency of Method (3.12)

Proof of Lemma 1

Proving assertion (3.15) is equivalent to proving that the continuous solution \((u,m,u^{ext})\) solves also the three equations in (3.12). Since \(u\in H^{\frac{3}{2}+t}(\varOmega )\) we have that

$$\begin{aligned} \llbracket u \rrbracket =0, \qquad \llbracket \nabla u\rrbracket =0, \qquad \{\!\!\!\{\nabla u\}\!\!\!\}=\nabla u \qquad \text {on }{\mathcal {F}}_h^I. \end{aligned}$$
(A.1)

We multiply (2.6) by \({\overline{v_h}}\in V_h\) and integrate elementwise by parts to get

$$\begin{aligned} \sum _{K\in \varOmega _h} \left( -\int _{\partial K} \nu \nabla u \cdot {\mathbf {n}}_{\varGamma }{\overline{v_h}} +\int _{K}\nu \,\nabla u \cdot \overline{\nabla v_h}\right) -\int _\varOmega (k n)^2 u {\overline{v_h}} =\int _\varOmega f{\overline{v_h}} . \end{aligned}$$

With the aid of the boundary condition in (2.6), inserting the parameter \(\delta \), and using the fact that \(\nu =1\) on \(\varGamma \), we manipulate the boundary term as follows:

$$\begin{aligned}&-\sum _{K\in \varOmega _h} \int _{\partial K} \nu \nabla u \cdot {\mathbf {n}}_{\varGamma }{\overline{v_h}} \\&\quad = -\int _{\varGamma }\delta \nabla u\cdot {\mathbf {n}}_{\varGamma }{\overline{v_h}} -\int _{\varGamma }(1-\delta ) m{\overline{v_h}} +\int _{\varGamma } \text {i}k(1-\delta )u {\overline{v_h}} -\int _{{\mathcal {F}}_h^I}\nu \nabla u \cdot \llbracket {\overline{v_h}}\rrbracket \\&\qquad +\int _{\varGamma }(\text {i}k)^{-1}\delta m\overline{\nabla v_h\cdot {\mathbf {n}}_{\varGamma }} -\int _{\varGamma }(\text {i}k)^{-1}\delta \nabla u\cdot {\mathbf {n}}_{\varGamma }\overline{\nabla v_h\cdot {\mathbf {n}}_{\varGamma }} -\int _{\varGamma }\delta u \overline{\nabla v_h\cdot {\mathbf {n}}_{\varGamma }} . \end{aligned}$$

Properties (A.1) and the above identity lead to the consistency of the first equation of (3.12), i.e.,

$$\begin{aligned}&\sum _{K\in \varOmega _h} a^K_h(u,v_h) + b_h^\varGamma (u,v_h) - (m, \delta (\text {i}k)^{-1} \nabla _h v_h\cdot {\mathbf {n}}_{\varGamma }+ (1-\delta )v_h)_{0,\varGamma }\\&\quad = (f,v_h)_{0,\varOmega } \qquad \forall v_h\in V_h. \end{aligned}$$

To show the consistency of the second equation of (3.12), we multiply (2.10), which is an equivalent formulation of (2.7), by \({\overline{v_h^{\text {ext}}}}\in Z_h\) and integrate over \(\varGamma \):

$$\begin{aligned} \langle ({\mathcal {B}}_k+ \text {i}k{\mathcal {A}}'_k) u^{ext}- {\mathcal {A}}'_km, v_h^{\text {ext}}\rangle =0 \qquad \forall v_h^{\text {ext}}\in Z_h. \end{aligned}$$

Eventually, multiplying (2.8) by \({\overline{\lambda _h}}\in W_h\) and integrating over \(\varGamma \), we get

$$\begin{aligned} \langle u , \lambda _h\rangle - \left\langle \left( \frac{1}{2} + {\mathcal {K}}_k\right) u^{ext}- {\mathcal {V}}_k(m- iku^{ext}), \lambda _h\right\rangle = 0. \end{aligned}$$

Similarly as above, the boundary condition in (2.6) leads to

$$\begin{aligned} \langle - \delta (\text {i}k)^{-1}\nabla u\cdot {\mathbf {n}}_{\varGamma },\lambda _h\rangle +\langle -\delta u,\lambda _h\rangle + \langle \delta (\text {i}k)^{-1}m,\lambda _h\rangle =0. \end{aligned}$$

Summing up the last two equations shows the consistency of the third equation in (3.12).

\(\square \)

An \(hp\)-Stable, Discontinuous-to-Continuous Reconstruction Operator on Curvilinear Simplicial Meshes

Here, we prove Theorem 2.

Let the mesh \(\varOmega _h\) satisfy the shape regularity Assumption (3.1) and \(v \in H_{{\text {pw}}}^1(\varOmega _h)\). We construct the operator \({\mathcal {P}}:H_{{\text {pw}}}^1(\varOmega _h) \rightarrow H^1(\varOmega )\) as the composition \({\mathcal {P}}:= {\mathcal {P}}_2\circ {\mathcal {P}}_1\) of two operators \({\mathcal {P}}_2\), \({\mathcal {P}}_1\) that we define below. Preliminarily, for each \(K\in \varOmega _h\), we construct a quasi-uniform, shape regular simplicial decomposition \({{\widetilde{\varOmega }}}_h^K\) of \(K\), such that the size of each element \({{\widetilde{K}}}\) of \({{\widetilde{\varOmega }}}_h^K\) is comparable to \({{\widetilde{h}}}_K:= h_K/\ell ^2\). Denote the union of all \({{\widetilde{\varOmega }}}_h^K\) by \({{\widetilde{\varOmega }}}_h\). By using a standard refinement strategy on the original mesh, we can additionally ensure that \({{\widetilde{\varOmega }}}_h\) does not contain hanging nodes. We also introduce

$$\begin{aligned} {{\widetilde{V}}}_h:=\{v \in \mathcal{S}^{1,0}(\varOmega ,{{\widetilde{\varOmega }}}_h)\,|\, v{}_{|_K} \in \mathcal{S}^{1,1}(K,{{\widetilde{\varOmega }}}_h^K) \quad \forall K \in \varOmega _h\}, \end{aligned}$$
(B.1)

the space of the mapped, piecewise linear polynomials over \({{\widetilde{\varOmega }}}_h\), which are continuous in each \(K\in \varOmega _h\) but possibly discontinuous at the interfaces of \(\varOmega _h\).

We define \({\mathcal {P}}_1: H_{{\text {pw}}}^1(\varOmega _h) \rightarrow {{\widetilde{V}}}_h\) as follows. For each \(K\in \varOmega _h\), \({\mathcal {P}}_1(v{}_{|K})\in \mathcal{S}^{1,1}(K, {{\widetilde{\varOmega }}}_h^K)\) is the quasi-interpolant of v defined in [4, Sec. 4]. As for \({\mathcal {P}}_2: {{\widetilde{V}}}_h\rightarrow \mathcal{S}^{1,1}(\varOmega , {{\widetilde{\varOmega }}}_h)\subset H^1(\varOmega )\), we choose the lowest-order, Oswald-type operator introduced by Karakashian and Pascal in [37]. This operator interpolates the arithmetical averages of the degrees of freedom at each vertex of the mesh \({{\widetilde{\varOmega }}}_h\). Thus, we are actually going to prove Theorem 2 with \({\mathcal {P}}:H_{{\text {pw}}}^1(\varOmega _h) \rightarrow \mathcal{S}^{1,1}(\varOmega , {{\widetilde{\varOmega }}}_h)\subset H^1(\varOmega )\). For simplicity, throughout this section we assume that \(h/{\ell ^2} \lesssim 1\) and \(\ell \in {\mathbb {N}}\). The other cases follow similarly but would incur some cumbersome notation/case distinctions.

Before proving (4.13)–(4.15), we recall two propositions, which summarize the properties of the operators \({\mathcal {P}}_1\) and \({\mathcal {P}}_2\).

Proposition 5

For any element \(K \in \varOmega _h\), the quasi-interpolant \({\mathcal {P}}_1:H_{{\text {pw}}}^1(\varOmega _h)\rightarrow {{\widetilde{V}}}_h\) satisfies the following estimates:

$$\begin{aligned} \Vert \nabla {\mathcal {P}}_1v \Vert _{0,K}&\lesssim \Vert \nabla v \Vert _{0,K} , \end{aligned}$$
(B.2)
$$\begin{aligned} \Vert v -{\mathcal {P}}_1v \Vert _{0,K}&\lesssim \Vert {{\mathfrak {h}}}\ell ^{-2} \nabla v \Vert _{0,K}, \end{aligned}$$
(B.3)
$$\begin{aligned} \Vert \llbracket {\mathcal {P}}_1v \rrbracket \Vert _{0,\partial K{\setminus } \varGamma }&\lesssim \Vert \llbracket v \rrbracket \Vert _{0,\partial K{\setminus } \varGamma }+ \Vert {{\mathfrak {h}}}^{1/2}\ell ^{-1} \nabla _h v \Vert _{0,\omega _K}, \end{aligned}$$
(B.4)

where \(\omega _K\) in (B.4) denotes the set of elements sharing a face with K.

Proof

Bounds (B.2) and (B.3) follow from [4, Thm. 4.1] locally on K as the domain to obtain a function on the subtriangulation \({{\widetilde{\varOmega }}}_h^K\). We can apply [4, Thm. 4.1] since \({{\widetilde{\varOmega }}}_h^K\) fulfills (3.1) and thus (3.2), which is the condition required there.

To show (B.4), we fix a facet F shared by the elements K and \(K'\). We get

$$\begin{aligned} \Vert \llbracket {\mathcal {P}}_1v \rrbracket \Vert _{0,F}&\le \Vert \llbracket v \rrbracket \Vert _{0,F} + \Vert \llbracket v - {\mathcal {P}}_1v \rrbracket \Vert _{0,F} \\&\le \Vert \llbracket v \rrbracket \Vert _{0,F} + \Vert \big (v - {\mathcal {P}}_1v \big )_{|K} \Vert _{0,F} + \Vert \big (v - {\mathcal {P}}_1v \big )_{|K'} \Vert _{0,F}. \end{aligned}$$

For brevity, we only consider the third term on the right-hand side. Transforming to the reference element, applying a multiplicative trace estimate and transforming back gives

$$\begin{aligned} \Vert \big (v - {\mathcal {P}}_1v \big )_{|K'} \Vert _{0,F}&\lesssim \Vert {{\mathfrak {h}}}^{-1/2} (v - {\mathcal {P}}_1v) \Vert _{0,K'} + \Vert v - {\mathcal {P}}_1v \Vert _{0,K'}^{1/2} \Vert \nabla (v - {\mathcal {P}}_1v) \Vert _{0,K'}^{1/2}. \end{aligned}$$

Inserting (B.2) and (B.3) yields (B.4). \(\square \)

Proposition 6

The Oswald-type operator \({\mathcal {P}}_2: {{\widetilde{V}}}_h\rightarrow \mathcal{S}^{1,1}(\varOmega , {{\widetilde{\varOmega }}}_h)\) satisfies the following properties:

$$\begin{aligned} \Vert {\widetilde{v}}_h - {\mathcal {P}}_2{\widetilde{v}}_h \Vert _{0,\varOmega } \lesssim \Vert {{\mathfrak {h}}}^{1/2} \ell ^{-1}\llbracket {\widetilde{v}}_h \rrbracket \Vert _{0,{\mathcal {F}}_h^I},\quad \Vert \nabla _h( {\widetilde{v}}_h - {\mathcal {P}}_2{\widetilde{v}}_h )\Vert _{0,\varOmega } \lesssim \Vert {{\mathfrak {h}}}^{-1/2} \ell \llbracket {\widetilde{v}}_h \rrbracket \Vert _{0,{\mathcal {F}}_h^I}. \end{aligned}$$
(B.5)

Proof

We claim that

$$\begin{aligned}&\Vert {\widetilde{v}}_h - {\mathcal {P}}_2{\widetilde{v}}_h \Vert _{0,\varOmega }^2 \lesssim \sum _{K\in \varOmega _h} {\Vert {{\widetilde{h}}}_{K}^{1/2}\llbracket {\widetilde{v}}_h \rrbracket \Vert _{0,\partial K{\setminus } \varGamma }^{2}} ,\quad \\&\Vert \nabla _h({\widetilde{v}}_h - {\mathcal {P}}_2{\widetilde{v}}_h) \Vert _{0,\varOmega }^2 \lesssim \sum _{K\in \varOmega _h} {\Vert {{\widetilde{h}}}_{K}^{-1/2}\llbracket {\widetilde{v}}_h \rrbracket \Vert _{0,\partial K{\setminus }\varGamma }^{2}. } \end{aligned}$$

This follows as in the proof of [37, Thm. 2.2], which only makes use of the definition of the Lagrangian degrees of freedom of \({\mathcal {P}}_2{\widetilde{v}}_h\) as arithmetical averages of the degrees of freedom of \({\widetilde{v}}_h\) and of the scaling properties of the basis functions. We remark that [37, Thm. 2.2] states the estimate in the \(H^1\) seminorm; the estimate in the \(L^2\) norm follows along the same lines; see also [5, Lemma 5.3]. Then, the estimates in (B.5) follow from the definition of \({{\widetilde{h}}}_K= h_K/\ell ^2\) and the fact that function \({\widetilde{v}}_h\) is continuous within each element \(K \in \varOmega _h\), i.e., no extra jumps are introduced along the edges of the refined triangulation \({{\widetilde{\varOmega }}}_h\). \(\square \)

As an immediate consequence of the shape regularity of \(\varOmega _h\) and the locality of the operator \({\mathcal {P}}_1\), we get

$$\begin{aligned}&\Vert {{\mathfrak {h}}}^{-1} \ell ^2\big ({\mathcal {P}}_1v - {\mathcal {P}}_2({\mathcal {P}}_1v) \big ) \Vert _{0,\varOmega }\nonumber \\&\quad \overset{(B.5)}{\lesssim } \Vert {{\mathfrak {h}}}^{-{1/2}} \ell \llbracket {\mathcal {P}}_1v \rrbracket \Vert _{0, {\mathcal {F}}_h^I}\overset{(B.4)}{\lesssim } \Vert {{\mathfrak {h}}}^{-{1/2}} \ell \llbracket v \rrbracket \Vert _{0, {\mathcal {F}}_h^I} + \Vert \nabla _hv \Vert _{0,\varOmega }. \end{aligned}$$
(B.6)

We prove further properties of the operator \({\mathcal {P}}_2\). First, proceeding as in Remark 2, we have the following inverse estimate for mapped, affine functions:

$$\begin{aligned} \Vert \nabla q \Vert _{0,{{\widetilde{K}}}} \lesssim {{\widetilde{h}}}_{K}^{-1} \Vert q \Vert _{0,{{\widetilde{K}}}} = \Vert {{\mathfrak {h}}}^{-1}\ell ^2 q \Vert _{0,{{\widetilde{K}}}} \quad \forall {{\widetilde{K}}}\in {{\widetilde{\varOmega }}}_h^K,\; \forall q \in \mathcal S^{1,1}\left( K, {{\widetilde{\varOmega }}}_h^K\right) . \end{aligned}$$
(B.7)

Next, we observe that

$$\begin{aligned} \Vert&\nabla _h{\mathcal {P}}_2({\mathcal {P}}_1v) \Vert _{0,\varOmega } \le \Vert \nabla _h({\mathcal {P}}_1v) \Vert _{0,\varOmega } + \Vert \nabla _h({\mathcal {P}}_1v - {\mathcal {P}}_2({\mathcal {P}}_1v)) \Vert _{0,\varOmega } \\&\overset{(B.2)}{\lesssim } \Vert \nabla _hv \Vert _{0,\varOmega } + \Vert \nabla _h({\mathcal {P}}_1v - {\mathcal {P}}_2({\mathcal {P}}_1v)) \Vert _{0,\varOmega }\\&\overset{(B.7)}{\lesssim } \Vert \nabla _hv \Vert _{0,\varOmega } + \Vert {{\mathfrak {h}}}^{-1}\ell ^2 \big ( {\mathcal {P}}_1v - {\mathcal {P}}_2({\mathcal {P}}_1v) \big ) \Vert _{0,\varOmega } \\&\overset{(B.6)}{\lesssim } \Vert \nabla _hv \Vert _{0,\varOmega } + \Vert {{\mathfrak {h}}}^{-1/2}\ell \llbracket v \rrbracket \Vert _{0,{\mathcal {F}}_h^I}. \end{aligned}$$
(B.8)

From this and the triangle inequality, we get (4.13).

In order to prove (4.14), we observe that the following approximation property of the operator \({\mathcal {P}}_2\) is valid:

$$\begin{aligned}&\Vert v - {\mathcal {P}}_2({\mathcal {P}}_1v) \Vert _{0,\varOmega } \le \Vert v - {\mathcal {P}}_1v \Vert _{0,\varOmega } + \Vert {\mathcal {P}}_1v - {\mathcal {P}}_2({\mathcal {P}}_1v) \Vert _{0,\varOmega }\\&\,\,\qquad \qquad \quad \qquad \overset{(B.3), (B.6)}{\lesssim } \Vert {{\mathfrak {h}}}\ell ^{-2}\nabla _hv \Vert _{0,\varOmega } + \Vert {{\mathfrak {h}}}^{1/2} \ell ^{-1} \llbracket v \rrbracket \Vert _{0, {\mathcal {F}}_h^I}. \end{aligned}$$
(B.9)

Then, (4.14) follows by the triangle inequality.

We are left to prove (4.15). To that end, we use a scaling argument. Given \(v \in H_{{\text {pw}}}^1(\varOmega _h)\), for any \(K\in \varOmega _h\), let \({{\widehat{v}}}\) be the polynomial pull-back of \({v}_{|_{K}}\) through the mapping \(\varPhi _K: {\widehat{K}}\rightarrow K\). We denote the counterparts of \({\mathcal {P}}_1\) and \({\mathcal {P}}_2\) acting on the polynomials on \({\widehat{K}}\) by \(\widehat{{\mathcal {P}}}_1\) and \(\widehat{{\mathcal {P}}}_2\), respectively. For any boundary face \(F\in {\mathcal {F}}_h^B\), we denote the pull-back of \(F\) through \(\varPhi _K\) by \({\widehat{F}}\), where \(K\) is the unique element such that \(F\subset \partial K\). For all \(F\in {\mathcal {F}}_h^B\), we apply a scaling argument, the multiplicative trace inequality, and the Young inequality to get

$$\begin{aligned} \Vert v - {\mathcal {P}}_2({\mathcal {P}}_1v) \Vert _{0,F}^2&\lesssim \Vert {{\mathfrak {h}}}({{\widehat{v}}} - \widehat{{\mathcal {P}}}_2(\widehat{{\mathcal {P}}}_1{{\widehat{v}}}) )\Vert _{0,{\widehat{F}}}^2 \\&\lesssim \Vert {{\mathfrak {h}}}({{\widehat{v}}} - \widehat{{\mathcal {P}}}_2(\widehat{{\mathcal {P}}}_1\widehat{v})) \Vert _{0,{\widehat{K}}}^2\\&\quad + \Vert {{\mathfrak {h}}}({{\widehat{v}}} - \widehat{{\mathcal {P}}}_2(\widehat{{\mathcal {P}}}_1{{\widehat{v}}})) \Vert _{0,{\widehat{K}}} \Vert {{\mathfrak {h}}}{\widehat{\nabla }} ({{\widehat{v}}} - \widehat{{\mathcal {P}}}_2(\widehat{{\mathcal {P}}}_1{{\widehat{v}}})) \Vert _{0,{\widehat{K}}} \\&{\mathop {\lesssim }\limits ^{\ell \ge 1}} \Vert {{\mathfrak {h}}}\ell ({{\widehat{v}}} - \widehat{{\mathcal {P}}}_2(\widehat{{\mathcal {P}}}_1{{\widehat{v}}})) \Vert _{0,{\widehat{K}}}^2 + \Vert {{\mathfrak {h}}}\ell ^{-1} {\widehat{\nabla }} ({{\widehat{v}}} - \widehat{{\mathcal {P}}}_2(\widehat{{\mathcal {P}}}_1{{\widehat{v}}})) \Vert _{0,{\widehat{K}}}^2. \end{aligned}$$

Scaling back to \(K\), summing over all the elements, and using the locality of the operators \({\mathcal {P}}_1\) and \({\mathcal {P}}_2\), as well the shape regularity of the meshes to insert the factor \({{\mathfrak {h}}}^{-{1/2}}\ell \), we deduce

$$\begin{aligned}&\Vert {{\mathfrak {h}}}^{-{1/2}} \ell \big (v - {\mathcal {P}}_2({\mathcal {P}}_1v) \big ) \Vert _{0,\varGamma }^2 \\&\quad \,\,\quad \lesssim \sum _{K\in \varOmega _h\text { with }{{\overline{K}}} \cap \partial \varOmega \in {\mathcal {F}}_h^B} \Vert {{\mathfrak {h}}}^{1/2} \ell ^2 ({{\widehat{v}}} - \widehat{{\mathcal {P}}}_2(\widehat{{\mathcal {P}}}_1{{\widehat{v}}})) \Vert _{0,{\widehat{K}}}^2 + \Vert {{\mathfrak {h}}}^{1/2}{\widehat{\nabla }} ({{\widehat{v}}} - \widehat{{\mathcal {P}}}_2(\widehat{{\mathcal {P}}}_1\widehat{v})) \Vert _{0,{\widehat{K}}}^2 \\&\quad \,\,\quad \lesssim \sum _{K\in \varOmega _h\text { with } {{\overline{K}}} \cap \partial \varOmega \in {\mathcal {F}}_h^B} \Vert {{\mathfrak {h}}}^{-1} \ell ^2 (v - {\mathcal {P}}_2({\mathcal {P}}_1v)) \Vert _{0,K}^2 + \Vert \nabla ( v - {\mathcal {P}}_2({\mathcal {P}}_1v)) \Vert _{0,K}^2\\&\, \overset{(B.9), (B.8)}{\lesssim } \Vert \nabla _hv \Vert _{0,\varOmega }^2 + \Vert {{\mathfrak {h}}}^{-1/2} \ell \llbracket v \rrbracket \Vert _{0, {\mathcal {F}}_h^I}^2, \end{aligned}$$

whence the assertion follows.

Explicit Error Estimates

Proof of Corollary 1

We start by noting that, for the special case \(s = 1\), the arguments below show that Assumption 5 is valid with \(\varepsilon = O(h/p)\). By Theorem 6, this fixes \(\eta _0\).

To simplify the exposition, we restrict our attention to the case \(p \ge s\). The case \(p < s\) is a pure h-version that is shown along similar lines. We shall nevertheless write \(\min (p,s) = s\) at the appropriate places.

By [4, Lemma 2.3], for any \(v \in H^{s+1}(\varOmega )\), Assumption 7 implies that the following estimate for the pull-back \({\widehat{v}}:= v|_K \circ \varPhi _K\) is valid for all \(K \in \varOmega _h\):

$$\begin{aligned} \Vert {\widehat{v}} \Vert _{s+1,{\widehat{K}}} \le c h_K^{s+1-3/2} \Vert v\Vert _{s+1,K}. \end{aligned}$$
(C.1)

We also note that, for \(j \in \{0,1\}\) and for each face F of element K with corresponding pull-back \({\widehat{F}}:= \varPhi _K^{-1}(F)\), bounds (3.1) imply

$$\begin{aligned} |{{\widehat{v}}}|_{j,{\widehat{K}}} \sim h_K^{j-3/2} |v|_{j,K}, \qquad |{{\widehat{v}}}|_{0,{\widehat{F}}} \sim h_K^{-1} |v|_{0,F}, \qquad |{\widehat{\nabla }} {{\widehat{v}}}|_{0,{\widehat{F}}} \sim |\nabla v|_{0,F}. \end{aligned}$$
(C.2)

Properties (C.2) allow for transferring approximation results on the reference element \({\widehat{K}}\) to the physical elements K (“scaling argument”). The last preliminary ingredient are p-explicit approximation results on the reference element for which we refer, e.g., to [46, Lemma B.3, Thm. B.4]. As in, e.g., [44], combining the polynomial approximation results on \({\widehat{K}}\) with (C.2) and (C.1) allows for showing that

$$\begin{aligned} \inf _{v_h \in S^{p,0}(\varOmega ,\varOmega _h)} \Vert u - v_h\Vert _{\text {DG}^+(\varOmega )} \le c h^{\min (p,s)} p^{-s+\frac{1}{2}} \Vert u\Vert _{s+1,\varOmega }. \end{aligned}$$
(C.3)

For the approximation of \(u^{ext}\) and \(m\), we obviate the discussion of changes of variables in fractional Sobolev norms by resorting to appropriate liftings. For the approximation of \(u^{ext}\), let \(U^{ext} \in H^{s+1}(\varOmega )\) be a lifting of \(u^{ext}\) with \(\Vert U^{ext}\Vert _{s+1,\varOmega } \lesssim \Vert u^{ext}\Vert _{s+\frac{1}{2},\varGamma }\). Since the mesh \(\varOmega _h\) is a regular mesh (see the discussion at the outset of Sect. 3.1), [46, Thm. B.4] provides an \(H^1(\varOmega )\)-conforming approximation with optimal convergence properties:

$$\begin{aligned} \inf _{v_h \in S^{p,1}(\varOmega ,\varOmega _h)} \Vert U^{ext} - v_h\Vert _{1,\varOmega } \le c h^{\min (p,s)} p^{-s} \Vert U^{ext}\Vert _{s+1,\varOmega } \le c h^{\min (p,s)}p^{-s} \Vert u^{ext}\Vert _{s+\frac{1}{2},\varGamma }. \end{aligned}$$

By taking the trace of \(v_h\) on \(\varGamma \), we obtain the desired approximation of \(u^{ext}\). Finally, for \(m\), let \(M \in H^{s}(\varOmega )\) be a lifting of \(m\in H^{s-\frac{1}{2}}(\varGamma )\) with \(\Vert M\Vert _{H^s(\varOmega )} \lesssim \Vert m\Vert _{H^{s-\frac{1}{2}}(\varGamma )}\). Let \(m_h \in S^{p-1,0}(\varGamma ,\varGamma _h)\) be the \(L^2(\varGamma )\)-projection of \(m\) into \(S^{p-1,0}(\varGamma ,\varGamma _h)\). For each face \(F \in {\mathcal {F}}_h^B\), denote by \(K_{F} \in \varOmega _h\) the element that has F as a face. Using approximation results on the reference element \({\widehat{K}}\) and the “scaling arguments” (C.2) we get

$$\begin{aligned} \Vert m- m_h\Vert _{0,F} \le c h_K^{\min (p,s)-1/2} p^{-s+1/2}\Vert M\Vert _{s,K_{F}}. \end{aligned}$$
(C.4)

By summation over all faces \(F \in {\mathcal {F}}_h^B\), we arrive at

$$\begin{aligned} \Vert {{\mathfrak {h}}}^{1/2} p^{-1} (m-m_h)\Vert _{0,\varGamma } \lesssim h^{\min (p,s)} p^{-s-1/2}\Vert (m-m_h) \Vert _{s-\frac{1}{2},\varGamma }. \end{aligned}$$

The \(H^{-\frac{1}{2}}(\varGamma )\)-estimate is obtained by a standard duality argument using the orthogonality provided by the \(L^2(\varGamma )\)-projection:

$$\begin{aligned} \Vert m- m_h\Vert _{-\frac{1}{2}, \varGamma } = \sup _{v \in H^{\frac{1}{2}}(\varGamma )} \frac{|\langle m- m_h,v\rangle |}{\Vert v\Vert _{\frac{1}{2},\varGamma } } = \sup _{v \in H^{\frac{1}{2}}(\varGamma )} \inf _{v_h \in S^{p-1,0}(\varGamma ,\varGamma _h)} \frac{|\langle m- m_h,v - v_h\rangle | }{\Vert v\Vert _{\frac{1}{2},\varGamma } }. \end{aligned}$$
(C.5)

The infimum is estimated by taking \(v_h\) as the \(L^2(\varGamma )\)-projection of v into \(S^{p-1,0}(\varGamma ,\varGamma _h)\). To estimate \(v - v_h\), let \(V \in H^1(\varOmega )\) be a lifting of \(v \in H^{\frac{1}{2}}(\varGamma )\) with \(\Vert V\Vert _{1,\varOmega } \lesssim \Vert v\Vert _{\frac{1}{2},\varGamma }\). By the same arguments as in (C.4) (taking \(s = 1\)), we have

$$\begin{aligned} \Vert v - v_h\Vert _{0,F} \le c h_K^{\min (p,1)-1/2} p^{-1+1/2} \Vert V\Vert _{1,K_{F}}. \end{aligned}$$

Inserting this in (C.5) yields

$$\begin{aligned} \Vert m- m_h\Vert _{-\frac{1}{2},\varGamma }&\lesssim \sup _{v \in H^{\frac{1}{2}}(\varGamma )} \frac{ \sum _{F \in {\mathcal {F}}_h^B} \Vert m- m_h\Vert _{0,F} \Vert v - v_h\Vert _{0,F} }{\Vert v\Vert _{\frac{1}{2},\varGamma } } \\&\lesssim \sup _{v \in H^{\frac{1}{2}}(\varGamma )} \frac{1}{\Vert v\Vert _{\frac{1}{2},\varGamma }} \sum _{F \in {\mathcal {F}}_h^B} p^{-s} h_K^{\min (p,s)-1/2+1-1/2} \Vert M\Vert _{s,K_{F}}\Vert V\Vert _{1,K_{F}} \\&\lesssim h^{\min (p,s)} p^{-s} \Vert m\Vert _{s-\frac{1}{2},\varGamma } , \end{aligned}$$

which completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erath, C., Mascotto, L., Melenk, J.M. et al. Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation. J Sci Comput 92, 2 (2022). https://doi.org/10.1007/s10915-022-01849-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01849-0

Keywords

Navigation