Skip to main content
Log in

Fabrication and Characterization of PLA/PHBV-Chitin Nanocomposites and Their Foams

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper examines the effect of biobased chitin nanowhisker fillers on the thermal, rheological, physical, mechanical and morphological properties of biobased polylactic acid (PLA) and PLA/polyhydroxybutyrate-co-valerate (PHBV) blended nanocomposites as well as the physical, mechanical and morphological properties of porous PLA and PLA/PHBV nanocomposite foams. Solid nanocomposites of PLA, PLA/PHBV and chitin nanowhiskers were manufactured through melt blending while porous nanocomposites foams were fabricated through a batch foaming process with the aid of CO2 as blowing agent. It was found that by incorporating small quantities of chitin nanowhiskers (<2 wt%) the mechanical properties of solid specimens are improved while strength and expandability of the foam can be significantly improved, yielding a homogenously distributed cell morphology with average cell size of 1.5 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Domenek S, Ducruet V, Guinault A, Colomines G (2008) Influences of the crystallisation rate on thermal and barrier properties of polylactide acid (PLA) food packaging films. IntJ Mater Form 1:607–610

    Article  Google Scholar 

  2. Bastioli GM, Bohlmann C (2005) Handbook of biodegradable polymers. Rapra Technology, Shawbury

    Google Scholar 

  3. Guillaume S, Bellon-Maurel V, Calmon A (1999) Evaluation of materials biodegradability in real conditions—development of a burial test and an analysis methodology based on numerical vision. J Environ Polym Degrad 7(3):157–166

    Article  Google Scholar 

  4. Guinault A, Sollogoub C, Nguyen TP (2010) Miscibility and morphology of poly(lactic acid)/poly(b-hydroxybutyrate) blends. In: Proceedings of the international conference on advances in materials and processing technologies, USA, pp 173–178

  5. Doi Y, Koyama N (1997) Miscibility of binary blends of poly[(R)-3-hydroxybutyric acid] and poly[(S)-lactic acid]. Polymer 38(7):1589–1593

    Article  Google Scholar 

  6. Owen AJ, Blümm E (1995) Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/poly(l-Lactide) blends. Polymer 36(21):4077–4081

    Article  Google Scholar 

  7. Wang L, Zhang M, Wang X-L, Wang Y-Z, Weng Y-X (2012) Biodegradation behaviour of P(3HB, 4HB)/PLA blends in real soil environment. Polym Testing 124:3074–3081

    Google Scholar 

  8. Koelling K, Vodovotz Y, Modi S (2012) Miscibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molecular weight poly(lactic acid) blends determined by thermal analysis. J Appl Polym Sci 124:3074–3081

    Article  Google Scholar 

  9. Budtova T, Gerard T (2012) Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur Polymer J 48:1110–1117

    Article  Google Scholar 

  10. Misra M, Mohanty AK, Nanda MR (2011) The effect of process engineering on the performance of PLA and PHBV Blends. Marcomol Mater Eng 296:719–728

    Google Scholar 

  11. Flynn A, Chiou B-S, Imamc S, Orts W, Abdelwahab M (2012) Thermal, mechanical and morphological characterization of plasticized PLA-PHB Blends. Polym Degrad Stab 97:1822–1828

    Article  Google Scholar 

  12. Rizvi R, Chow A, Richards E (2008) Biodegradable composite foam of PLA and PHBV using subcritical CO2. J Polym Environ 16(4):258–266

    Article  Google Scholar 

  13. Dean K, Li L, Yu L (2006) Polymer blends and composites from renewable sources. Prog Polym Sci 6(31):576–602

    Google Scholar 

  14. Visakh PM, Thomas S (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valor 1(1):121–134

    Google Scholar 

  15. Bertioz S, Chailan J-F, Panaitescu DM, Donescu D, Frone AN (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32(6):977–985

    Google Scholar 

  16. Mathew AP, Bondeson D, Kvien I, Oksman K (2006) Manufacturing process of cellulose whisker/polylactic acid nanocomposite. Compos Sci Technol 66(15):2776–2784

    Google Scholar 

  17. Reza R, Cochrane B, Naguib H, Lee PC (2011) Fabrication and characterization of melt-blended polylactide-chitin composites and their foams. J Cell Plast 47(3):283–300

    Google Scholar 

  18. Lenos AF, Ferreria JMF, Araujo ABA (2009) Rheological, microstructural and vitro characterization of hybrid chitosan–polylactic acid/hydroxyapatite composites. J Biomed Mater Res 4(88):916–922

    Google Scholar 

  19. Wu Q, Wang S, Zhang S, Hu Z, Wan Y (2007) Mechanical properties of porous polylactide/chitosan blend membrane. Macromol Mater Eng 5(292):598–607

    Google Scholar 

  20. Rausch J, Sandler JKW, Altstadt V, Schmalz H, Muller AHE, Ruckdschel H (2008) Correlation of the melt rheological properties with the foaming behaviour of immiscible blends of poly (2,6-dimethyl-1,4-phenylene ether) and poly (styrene-co-acrylonitrile). Polym Eng Sci 10(1002):2111–2125

    Google Scholar 

  21. Takagi J, Ohshima M, T Nemoto (2010) Nanocellular foams-cell structure difference between immiscible and miscible PEEK/PEI polymer blends. Polym Eng Sci 10(1002):2408–2416

    Google Scholar 

  22. Selke SM, Matuana L, Rachtanapun P (2004) Relationship between cell morphology and impact strength of microcellular foam high density polyethylene/polypropylene blends. Polym Eng Sci 44(8):1551–1560

    Google Scholar 

  23. Guan Q, Rizvi R, Naguib H (2013) A study of the physical and mechanical properties of biobased polylactic acid/polyhydroxybutyrate-co-valerate blend and foams. J Biobased Mater Biol 7:1–9

    Google Scholar 

  24. Zhang H, Zheng W, Yang Y (2010) The microcellular foaming of polycarbonate/polystyrene blends. Polym Plast Technol Eng 49(10–12):1214–1222

    Google Scholar 

  25. Thorsen AJ, Czerwonka LA, Mikos AG (1994) Preparation and characterization of poly (l-lactic acid) foams. Polymer 35(5):1068–1077

    Article  Google Scholar 

  26. Ponticiello MS, Leong KW, Lo H (1995) Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng 1(1):15–28

    Article  Google Scholar 

  27. Nunes SP (1997) Recent advances in the controlled formation of pores in membranes 5(6):187–192

  28. Paillet M, Dufresne A (2001) Chitin whisker reinforced thermoplastic. Macromolecules 34(19):6527–6530

    Google Scholar 

  29. HE Naguib, Jo C (2007) Effect of nanoclay and foaming conditions on the mechanical properties of HDPE—clay nanocomposite foams. J Cell Plast 43(111):111–121

    Google Scholar 

  30. Narayan R, Dubois P (2003) Biodegradable compositions by reactive processing of aliphatic polyester/polysaccharide blends. Macromol Symp 198:233–243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani E. Naguib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, Q., Naguib, H.E. Fabrication and Characterization of PLA/PHBV-Chitin Nanocomposites and Their Foams. J Polym Environ 22, 119–130 (2014). https://doi.org/10.1007/s10924-013-0625-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0625-8

Keywords

Navigation