Skip to main content
Log in

Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper presents a study of biodegradation, in soil, of samples of poly(butylene adipate-co-terephthalate)(PBAT), poly(lactic acid) (PLA) and blends of these materials prepared in torque rheometer with the addition of a chain extender. Film samples of these materials were buried in soil under controlled laboratory conditions. The degraded samples were regularly taken from soil and analyzed by visual inspection, size exclusion chromatography, differential scanning calorimetry and infrared spectroscopy. Respirometry biodegradation tests were conducted to assess samples mineralization degree. Blends showed higher degree of crystallinity compared to pure polymers. Crystallinity degree enhanced during the biodegradation process in all samples, being able to causing the samples to degrade slowly. The study showed the great complexity of the biodegradation process of PLA and PBAT blends when compatibilized with a chain extender. The biodegradation rate showed different results depending on the characteristic applied to evaluate it: visual, molecular weight or mineralization. The chain extender had strong influence in PBAT and blends degradation, slowing the process as observed by the variation of molecular weight and carbonyl index. Blends showed an intermediate behavior compared to the original polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rudeekit Y, Numnoi J, Tajan M, Chaiwutthinan P, Leejarkpai T (2008) JOM J Min Met Mat S 18:83–87.

    Google Scholar 

  2. Sirisinha K, Somboon W (2012) J Appl Polym Sci 124:4986–4992

    CAS  Google Scholar 

  3. Fukushima K, Rasyida A, Yang MC (2013) Appl Clay Sci 80–81:291–298

    Article  Google Scholar 

  4. Hughes J, Thomas R, Byun Y, Whiteside S (2012) Carbohyd Polym 88:165–172

    Article  CAS  Google Scholar 

  5. Livi S, Bugatti V, Marechal M, Soares BG, Barra GMO, Duchet-Rumeau J, Gérard JF (2015) RSC Adv 5:1989–1998.

    Article  CAS  Google Scholar 

  6. Hamada K, Kaseema M, Koa YG, Derib F (2014) Polym Sci Ser 56:812–829

    Article  Google Scholar 

  7. Rudnik E, Briassoulis D (2011) Ind Crop Prod 33:648–658.

    Article  CAS  Google Scholar 

  8. Signori F, Coltelli MB, Bronco S (2009) Polym Degrad Stab 94:74–82

    Article  CAS  Google Scholar 

  9. Kumar M, Mohanty S, Nayak SK, Rahail Parvaiz M (2010) Bioresour Technol 101:8406–8410

    Article  CAS  Google Scholar 

  10. Arruda LC, Magaton M, R. E. S. Bretas, Ueki MM (2015) Polym. Test 43:27–37

    CAS  Google Scholar 

  11. Al-Itry R, Lamnawar K, Maazouz A (2012) Polym Degrad Stab 97:1898–1914

    Article  CAS  Google Scholar 

  12. Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199–207

    Article  Google Scholar 

  13. Lin S, Guo W, Chen C, Ma J, Wang B (2012) Mater Des 36:604–608

    Article  CAS  Google Scholar 

  14. Pivsa-Art W, Chaiyasat A, Pivsa-Art S, Yamane H, Ohara H (2013) Energy Procedia 34:549–554.

    Article  CAS  Google Scholar 

  15. Yeh JT, Tsou CH, Huang CY, Chen KN, Wu CS, Chai WL (2010) J Appl Polym Sci 116:680–687

    CAS  Google Scholar 

  16. Al-Itry R, Lamnawar K, Maazouz A, Billon N, Combeaud C (2015) Eur Polym J 68:288–301

    Article  CAS  Google Scholar 

  17. Touchaleaume F, Martin-Closas L, Angellier-Coussy H, Chevillard A (2016) Chemosphere 144:433–439

    Article  CAS  Google Scholar 

  18. Wang LF, Rhim JW, Hong SI (2016) Food Sci Technol Int 68:454–461.

    CAS  Google Scholar 

  19. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Polym Degrad Stab 94:1646–1655.

    Article  CAS  Google Scholar 

  20. Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2011) Adv Polym Sci:1–46

  21. Ma P, Cai X, Zhang Y, Wang S, Dong W, Chen M, Lemstra PJ (2014) Polym Degrad Stab 102:145–151

    Article  CAS  Google Scholar 

  22. Signori F, Boggioni A, Righetti MC, Rondán CE, Bronco S, Ciardelli F (2015) Macromol Mater Eng 300:153–160

    Article  CAS  Google Scholar 

  23. Dong W, Zou B, Yan Y, Ma P, Chen M (2013) Int J Mol Sci 14:20189–20203

    Article  Google Scholar 

  24. Schneider J, Manjure S, Narayan R (2016) J Appl Polym Sci 43310:1–9

    Google Scholar 

  25. Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G (2006) Energy 31:3227–3234

    Article  CAS  Google Scholar 

  26. Scheirs J, Long TE, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters (Wiley Series in Polymer Science. Australia, 2005)

  27. Ghanbari A, Heuzey MC, Carreau PJ, Ton-That M (2013) Polymer 54:1361–1369

    Article  CAS  Google Scholar 

  28. Duarte S, Tavares AA, Lima PS, Andrade DL, Carvalho LH, Canedo EL, Silva SM (2016) Polym Degrad Stab 124:26–34.

    Article  CAS  Google Scholar 

  29. Agarwal M, Koelling KW, Chalmers JJ (1998) Biotechnol Progr 14:517–526.

    Article  CAS  Google Scholar 

  30. Kale G, Auras R, Singh SP (2007) Packag Technol Sci 20:49–70.

    Article  CAS  Google Scholar 

  31. Tokiwa Y, B. P (2006) Calabia. Appl Microbiol Biotechnol 72:244–251

    Article  CAS  Google Scholar 

  32. Oyama HT, Tanaka Y, Hirai S, Shida S, Kadosaka A (2011) J Polym Sci Part B 49:342–354.

    Article  CAS  Google Scholar 

  33. Nieddu E, Mazzucco L, Gentile P, Benko T, Balbo V, Mandrile R, Ciardelli G (2009) React Funct Polym 69:371–379

    Article  CAS  Google Scholar 

  34. Souza PMS, Corroque NA, Morales AR, Marin-Morales M, Mei LHI (2013) J Polym Environ 21:1052–1063

    Article  CAS  Google Scholar 

  35. Souza PMS, Morales AR, Marin-Morales M, Mei LHI (2013) J Polym Environ 21:738–759

    Article  Google Scholar 

  36. Souza PMS, Morales AR, Mei LHI (2014) Polímeros 24:110–116.

    Article  CAS  Google Scholar 

  37. Kumar S, Maiti P (2015) Polymer 76:25–33

    Article  CAS  Google Scholar 

  38. Stloukal P, Kalendova A, Mattausch H, Laske S, Holzer C, Koutny M (2015) Polym. Test 41:124–132

    CAS  Google Scholar 

  39. Al-Itry R, Lamnawar K, Maazouz A (2014) Rheol Acta 53:501–517

    Article  CAS  Google Scholar 

  40. Arruda LC, Magaton M, R. E (2015) S. Bretas; M. M Ueki Polym Test 43:27–37

    Article  CAS  Google Scholar 

  41. Tabasi RY, Ajji A (2015) Polym Degrad Stab 120:435–442.

    Article  CAS  Google Scholar 

  42. Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang Polym Y-Z (2013) Test 32:918–926

    CAS  Google Scholar 

  43. Kuchnier CN Study of the effect of multifunctional chain extender in PLA/PBAT blends (State University of Campinas, Campinas, 2014).

  44. Anderson JPE, In: Soil Respiration, (eds.) AL Page, RH Miller, DR Keeney (Madison, Wisconsin, 1982), pp. 831–866. Methods of soil analysis -Part 2—Chemical and microbiological properties (1982).

  45. American Society for Testing and Materials (2012) ASTM Standard D5988-12. Philadelphia, PA

  46. Saadi Z, Cesar G, Bewa H, Benguigui L (2013) J Polym Environ 21:893–901.

    Article  CAS  Google Scholar 

  47. Ho KG, Pometto AL (1999) J Polym Environ 7 101–108.

    Article  CAS  Google Scholar 

  48. Tham WL, Poh BT, Mohd Ishak ZA, Chow WS (2015) J Polym Environ 23:242–250

    Article  CAS  Google Scholar 

  49. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  50. Pan P, Zhu B, Inoue Y (2007) Macromolecules 40:9664–9671

    Article  CAS  Google Scholar 

  51. Di Lorenzo ML, Cocca M, Malinconico M (2011) Thermochim Acta 522:110–117.

    Article  CAS  Google Scholar 

  52. Tábi T, Sajó IE, Szabó F, Luyt AS, Kovács JG (2010) Polym Lett 4:659–668

    Article  Google Scholar 

  53. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Polym Degrad Stab 95:116–125

    Article  CAS  Google Scholar 

  54. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Chemosphere 71:942–953

    Article  CAS  Google Scholar 

  55. Henton DE, Gruber P, Lunt J, Randall J (2005) In: Mohanty AK, Misra M, Drzal LT (eds) Taylor & Francis, Boca Raton, pp. 527–577

  56. Lunt J (1998) Polym Degrad Stab 59:145–152

    Article  CAS  Google Scholar 

  57. Fukushima K, Tabuani D, Camino G (2009) Mater Sci Eng C 29:1433–1441

    Article  CAS  Google Scholar 

  58. Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K (2006) Polymer 47:7554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Foundation for Research of the State of São Paulo—FAPESP (Process 2014/09883-5) and National Council of Scientific and Technological Development CNPQ for the financial support, and the MICROMAT (Prof. Lucia Innocentini Mei) for the mineralization tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rita Morales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palsikowski, P.A., Kuchnier, C.N., Pinheiro, I.F. et al. Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. J Polym Environ 26, 330–341 (2018). https://doi.org/10.1007/s10924-017-0951-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0951-3

Keywords

Navigation