Skip to main content
Log in

New Lignocellulosic Aristida adscensionis Fibers as Novel Reinforcement for Composite Materials: Extraction, Characterization and Weibull Distribution Analysis

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this research, the Aristida adscensionis fibers (AAFs) were taken out from the plants and its fundamental properties anlayzed for the first time. The AAFs were characterized and compared with other natural fibers by the use of physico-chemical analysis and various characterization techniques such as FT-IR, XRD, NMR, TGA, SEM and AFM. Chemical analysis showed that A. adscensionis fibers have a high cellulose content of 70.78% whereas the contents of lignin and wax are equal to 8.91% and 2.26%, respectively. The FT-IR, XRD and NMR analysis confirmed that AAFs are rich in cellulose content with CI and CS equal to 58.9% and 11.5 nm, respectively. Pycnometer analysis allowed to estimate a density of 790 kg/m3. The TGA revealed that these fibers are thermally stable up to 250 °C while SEM and AFM analysis evidenced that the fiber surface was rough. The fiber diameter and tensile properties was analysed by Weibull distribution. The characterization results and Weibull distribution analysis for the A. adscensionis fibers are an agreement with other natural fibers reported in literature. So this new lignocellulosic material is suitable as reinforcing phase in composites for potential engineering semi-structural applications like roofing sheets, bricks, door panels, furniture panels, interior paneling, storage tanks, pipelines, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saba N, Jawaid M, Alothman OY, Paridah MT, Hassan A (2016) J Rein Plast Compos 35(6):447–470

    Article  CAS  Google Scholar 

  2. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) J Clean Prod 172:566–581

    Article  CAS  Google Scholar 

  3. Sarasini F, Fiore V (2018) J Clean Prod 195:240–267

    Article  CAS  Google Scholar 

  4. Sanjay MR, Arpitha GR, Naik LL, Gopalakrishna K, Yogesha B (2016) Nat Resour 7(03):108

    CAS  Google Scholar 

  5. Chandrasekar M, Ishak MR, Sapuan SM, Leman Z, Jawaid M (2017) Plast Rubb Compos 46(3):119–136

    Article  CAS  Google Scholar 

  6. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) Composite B 42(4):856–873

    Article  Google Scholar 

  7. Madhu P, Sanjay MR, Senthamaraikannan P, Pradeep S, Saravanakumar SS, Yogesha B (2018) J Nat Fibers 16(8):1132–1144

    Article  Google Scholar 

  8. Saheb DN, Jog JP (1999) J Polym Process Inst 18(4):351–363

    CAS  Google Scholar 

  9. Malkapuram R, Kumar V, Negi YS (2009) J Reinf Plast Compos 28(10):1169–1189

    Article  CAS  Google Scholar 

  10. Puttegowda M, Rangappa SM, Jawaid M, Shivanna P, Basavegowda Y, Saba N (2018) Sustainable Composites for Aerospace Applications, pp 315–351

  11. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B (2018) Cogent Eng 5(1):1446667

    Article  Google Scholar 

  12. Madhu P, Sanjay MR, Senthamaraikannan P, Pradeep S, Siengchin S, Jawaid M, Kathiresan M (2018) J Nat Fibers. https://doi.org/10.1080/15440478.2018.1534191

    Article  Google Scholar 

  13. Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK, Jawaid M (2018) Carbohydr Polym 181:650–658

    Article  CAS  Google Scholar 

  14. Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Jawaid M, Khan A, Parameswaranpillai J (2019) Int J Biol Macromol 125:99–108

    Article  CAS  Google Scholar 

  15. Fiore V, Valenza A, Di Bella G (2011) Compos Sci Technol 71(8):1138–1144

    Article  CAS  Google Scholar 

  16. Sarikanat M, Seki Y, Sever K, Durmuşkahya C (2014) Composites B 57:180–186

    Article  CAS  Google Scholar 

  17. Senthamaraikannan P, Saravanakumar SS, Sanjay MR, Jawaid M, Siengchin S (2019) Mater Lett 240:221–224

    Article  CAS  Google Scholar 

  18. Fiore V, Scalici T, Valenza A (2014) Carbohydr Polym 106:77–83

    Article  CAS  Google Scholar 

  19. Koronis G, Silva A, Fontul M (2013) Composites B 44(1):120–127

    Article  CAS  Google Scholar 

  20. Manimaran P, Sanjay MR, Senthamaraikannan P, Jawaid M, Saravanakumar SS, George R (2018) J Nat Fibers 16(5):768–780

    Article  Google Scholar 

  21. Sreenivasan VS, Somasundaram S, Ravindran D, Manikandan V, Narayanasamy R (2011) Mater Des 32(1):453–461

    Article  CAS  Google Scholar 

  22. Suryanto H, Marsyahyo E, Irawan YS, Soenoko R (2014) J Nat Fibers 11(4):333–351

    Article  CAS  Google Scholar 

  23. de Andrade Silva F, Chawla N, de Toledo Filho RD (2008) Compos Sci Technol 68(15–16):3438–3443

    Article  Google Scholar 

  24. Senthamaraikannan P, Sanjay MR, Bhat KS, Padmaraj NH, Jawaid M (2018) J Nat Fibers 16(8):1124–1131

    Article  Google Scholar 

  25. Maheshwaran MV, Hyness NRJ, Senthamaraikannan P, Saravanakumar SS, Sanjay MR (2018) J Nat Fibers 15(6):789–798

    Article  CAS  Google Scholar 

  26. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2018) Carbohydr Polym 207:108–121

    Google Scholar 

  27. Jayaramudu J, Maity A, Sadiku ER, Guduri BR, Rajulu AV, Ramana CV, Li R (2011) Carbohydr Polym 86(4):1623–1629

    Article  CAS  Google Scholar 

  28. Segal LGJMA, Creely JJ, Martin AE Jr, Conrad CM (1959) Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  29. Balaji AN, Nagarajan KJ (2017) Carbohydr Polym 174:200–208

    Article  CAS  Google Scholar 

  30. Manimaran P, Senthamaraikannan P, Murugananthan K, Sanjay MR (2018) J Nat Fibers 15(1):29–38

    Article  CAS  Google Scholar 

  31. Indran S, Raj RE, Sreenivasan VS (2014) Carbohydr Polym 110:423–429

    Article  CAS  Google Scholar 

  32. Belouadah Z, Ati A, Rokbi M (2015) Carbohydr Polym 134:429–437

    Article  CAS  Google Scholar 

  33. Saravanakumar SS, Kumaravel A, Nagarajan T, Sudhakar P, Baskaran R (2013) Carbohydr Polym 92(2):1928–1933

    Article  CAS  Google Scholar 

  34. Mylsamy K, Rajendran I (2010) J Reinf Plast Compos 29(19):2925–2935

    Article  CAS  Google Scholar 

  35. Mayandi K, Rajini N, Pitchipoo P, Jappes JW, Rajulu AV (2016) Int J Polym Anal Charact 21(2):175–183

    Article  CAS  Google Scholar 

  36. Seki Y, Sarikanat M, Sever K, Durmuşkahya C (2013) Composites B 44(1):517–523

    Article  CAS  Google Scholar 

  37. Kommula VP, Reddy KO, Shukla M, Marwala T, Rajulu AV (2013) Inter J Polym Anal Charact 18(4):303–314

    Article  CAS  Google Scholar 

  38. Jayaramudu J, Guduri BR, Rajulu AV (2010) Carbohydr Polym 79(4):847–851

    Article  CAS  Google Scholar 

  39. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Compos Sci Technol 70(1):116–122

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the King Mongkut’s University of Technology North Bangkok with Grant No. KMUTNB-63-KNOW-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jawaid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manimaran, P., Saravanan, S.P., Sanjay, M.R. et al. New Lignocellulosic Aristida adscensionis Fibers as Novel Reinforcement for Composite Materials: Extraction, Characterization and Weibull Distribution Analysis. J Polym Environ 28, 803–811 (2020). https://doi.org/10.1007/s10924-019-01640-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01640-7

Keywords

Navigation