Skip to main content
Log in

Production and Characterization of Green Flame Retardant Poly(lactic acid) Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the current study, huntite hydromagnesite (HH) was used as flame retardant additive in poly (lactic acid) (PLA) to produce green flame retardant composites. The effects of HH amount, particle size and surface modifications on the flame retardant, thermal and mechanical properties were investigated. The properties of the composites were investigated using limiting oxygen index (LOI), horizontal and vertical burning test (UL 94), mass loss calorimeter, thermogravimetric analysis, tensile test, impact test and dynamic mechanical analysis. According to results, the flame retardant PLA composites with different UL-94 ratings (HB, V2, V0) were produced. The LOI value increased as the added amount of HH increased. The highest LOI value of 34.2 was achieved with the addition of 60 wt% HH. Surface modifications had no remarkable effect on the flammability properties of the composites. The addition of HH reduced the tensile and impact strengths and improved the elastic modulus of the composites as the added amount of HH increased. The addition of HH with large particle size deteriorated the flammability properties and tensile strength despite of the increase in impact strength. Surface modifications improved the mechanical properties of the composites due to the improvement in interfacial adhesion between HH and PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Murariu M, Dubois P (2016) Adv Drug Deliver Rev 107:17

    CAS  Google Scholar 

  2. Castro-Aguirre E, Iniguez-Franco F, Samsudin H, Fang X, Auras R (2016) Adv Drug Deliv Rev 107:333

    PubMed  CAS  Google Scholar 

  3. Bourbigot S, Fontaine G (2010) Polym Chem 1:1413

    CAS  Google Scholar 

  4. Chow WS, Teoh EL, Karger Kocsis JK (2018) Express Polym Lett 12:396

    CAS  Google Scholar 

  5. Tawiah B, Yu B, Fei B (2018) Polymers 10:876

    PubMed Central  Google Scholar 

  6. Idumah CI, Hassan A (2015) Rev Chem Eng 32:1

    Google Scholar 

  7. Hull TR, Witkowski A, Hollingbery L (2011) Polym Degrad Stab 96:1462

    CAS  Google Scholar 

  8. Cheng KC, Yu CB, Guo W, Wang SF, Chuang TH, Lin YH (2012) Carbohyd Polym 87:1119

    CAS  Google Scholar 

  9. Woo Y, Cho D (2013) Adv Compos Mater 22:451

    CAS  Google Scholar 

  10. Kiuchi Y, Iji M, Yanagisawa T, Shukichi T (2014) Polym Degrad Stab 109:336

    CAS  Google Scholar 

  11. Das K, Ray SS, Chapple S, Wesley-Smith J (2013) Ind Eng Chem Res 52:6083

    CAS  Google Scholar 

  12. Hollingbery LA, Hull TR (2010) Polym Degrad Stab 95:2213

    CAS  Google Scholar 

  13. Hollingbery LA, Hull TR (2010) Thermochim Acta 508:1

    Google Scholar 

  14. Yurddaskal M, Nil M, Ozturk Y, Celik E (2018) J Mater Sci Mater Electron 29:4557

    CAS  Google Scholar 

  15. Atay HY, Celik E (2013) Polym Plast Technol 52:182

    CAS  Google Scholar 

  16. Hollingbery L, Hull TR (2012) Polym Degrad Stab 97:504

    CAS  Google Scholar 

  17. Haurie L, Fernandez AI, Velasco JI, Chimenos JM, Ticó-Grau JR, Espiell F (2005) Macromol Symp 221:165

    CAS  Google Scholar 

  18. Atay HY, Celik E (2010) Polym Compos 31:1692

    CAS  Google Scholar 

  19. Basfar A, Bae H (2010) J Fire Sci 28:161

    CAS  Google Scholar 

  20. Morgan AB, Cogen JM, Opperman RS, Harris JD (2007) Fire Mater 31:387

    CAS  Google Scholar 

  21. Yurddaskal M, Celik E (2018) Compos Struct 183:381

    Google Scholar 

  22. Haurie L, Fernández AI, Velasco JI, Chimenos JM, Cuesta JML, Espiell F (2006) Polym Degrad Stab 91:989

    CAS  Google Scholar 

  23. Savas LA, Arslan C, Hacıoglu F, Dogan M (2018) J Therm Anal Calorim 134:1657

    CAS  Google Scholar 

  24. Touré B, Lopez-Cuesta J, Benhassaine A, Crespy A (1996) Int J Polym Anal Chem 2:193

    Google Scholar 

  25. Briggs C, Hollingbery L, Day R, Gilbert M (1997) Plast Rub Compos 26:66

    CAS  Google Scholar 

  26. Dike AS, Tayfun U, Dogan M (2017) Fire Mater 41:890

    CAS  Google Scholar 

  27. Guler T, Tayfun U, Bayramli E, Dogan M (2017) Thermochim Acta 647:70

    CAS  Google Scholar 

  28. Savas LA, Deniz TK, Tayfun U, Dogan M (2017) Polym Degrad Stab 135:121

    CAS  Google Scholar 

  29. Costes L, Laoutid F, Brohez S, Dubois P (2017) Mater Sci Eng R 117:1

    Google Scholar 

  30. Malucelli G, Bosco F, Alongi J, Carosio F, Blasio AD, Mollea C, Cuttica F, Casale A (2014) RSC Adv 4:46024

    CAS  Google Scholar 

  31. Basak S, Ali SW (2016) Polym Degrad Stab 132:47

    Google Scholar 

  32. Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Polym Adv Technol 19:628

    CAS  Google Scholar 

  33. Chollet B, Lopez-Cuesta JM, Laoutid F, Ferry L (2019) Materials 12:2132

    PubMed Central  CAS  Google Scholar 

  34. Zhang R, Xiao X, Tai Q, Huang H, Hu Y (2012) Polym Eng Sci 52:2620

    CAS  Google Scholar 

  35. Wang X, Hu Y, Song L, Xuan S, Xing W, Bai Z, Lu H (2011) Ind Eng Chem Res 50:713

    CAS  Google Scholar 

  36. Feng JX, Su SP, Zhu J (2011) Polym Adv Technol 22:1115

    CAS  Google Scholar 

  37. Fox DM, Lee J, Citro CJ, Novy M (2013) Polym Degrad Stabil 98:590

    CAS  Google Scholar 

  38. Wang J, Ren Q, Zheng W, Zhai W (2014) Ind Eng Chem Res 53:1422

    CAS  Google Scholar 

  39. Xiong Z, Zhang Y, Du X, Song P, Fang Z (2019) Sustain Chem Eng 7:8954

    CAS  Google Scholar 

  40. Mauldin TC, Zammarano M, Gilman JW, Shields JR, Boday DJ (2014) Polym Chem 5:5139

    CAS  Google Scholar 

  41. Li D, Jia Y, Wang X, Wang Y (2018) Compos Commun 8:52

    Google Scholar 

  42. Costes L, Laoutid F, Brohez S, Delvosalle C (2017) Eur Polym J 94:270

    CAS  Google Scholar 

  43. Cheng X, Guan J, Tang R, Lu K (2016) J Clean Prod 124:114

    CAS  Google Scholar 

  44. Laoutid F, Vahabi H, Shabanian M, Aryanasab F, Zarrintaj P, Saeb MR (2018) Fire Mater 42:914

    CAS  Google Scholar 

  45. Yang W, Tawiah B, Yu C, Qian Y, Wang L, Yuen AC, Zhu S, Hu E, Chen TB, Yu B, Lu H, Yoh G, Wang X, Song L, Hu Y (2018) Composites A 110:227

    CAS  Google Scholar 

  46. Koga N, Yamane Y (2008) J Therm Anal Calorim 93:963

    CAS  Google Scholar 

  47. Huang H, Tian M, Yang J, Li H, Liang W, Zhang L, Li X (2008) J Appl Polym Sci 107:3325

    CAS  Google Scholar 

  48. Osman MA, Suter UW (2002) Chem Mater 14:4408

    CAS  Google Scholar 

  49. Kataby G, Cojocaru M, Prozorov R, Gedanken A (1999) Langmuir 15:1703

    CAS  Google Scholar 

  50. Gilbert M, Sutherland I, Guest A (2000) J Mater Sci 35:391

    CAS  Google Scholar 

  51. Liu X, Xu W, Peng X (2009) Polym Compos 30:1854

    CAS  Google Scholar 

  52. Yang W, Zhang YR, Yuen ACY, Chen TBY, Chan MC, Peng LZ, Yang WJ, Zhu SE, Yang BH, Hu KH, Yeoh GH, Lu HD (2017) Chem Eng J 321:257

    CAS  Google Scholar 

  53. Chemtob A, Courtecuisse F, Croutxe-Barghorn C, Rigolet S (2011) New J Chem 35:1803

    CAS  Google Scholar 

  54. Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Composites A 38:227

    Google Scholar 

  55. Carrasco F, Pages P, Gamez Perez J, Santana OO, Maspoch ML (2010) Polym Degrad Stab 95:116

    CAS  Google Scholar 

  56. Cuadri AA, Martin-Alfonso JE (2018) Polym Degrad Stab 150:37

    CAS  Google Scholar 

  57. Kopinke FD, Remmler M, Mackenzie K, Möder M, Wachsen O (1996) Polym Degrad Stab 53:329

    CAS  Google Scholar 

  58. Westphal C, Perrot C, Karlsson S (2001) Polym Degrad Stab 73:281

    CAS  Google Scholar 

  59. Fina A, Camino G (2011) Polym Adv Technol 22:1147

    CAS  Google Scholar 

  60. Cardenes MA, Garcia-Lopez D, Gobernado-Mitre I, Merino JC, Pastor JM, Martinez JD, Barbeta J, Calveras D (2008) Polym Degrad Stabil 93:2032

    Google Scholar 

  61. Huang H, Tian M, Liu L, Liang W, Zhang L (2006) J Appl Polym Sci 100:4461

    CAS  Google Scholar 

  62. Kaully T, Siegmann A, Shacham D (2008) Polym Compos 29:396

    CAS  Google Scholar 

  63. Móczó J, Pukánszky B (2008) J Ind Eng Chem 14:535

    Google Scholar 

  64. Fu S, Feng X, Lauke B, Mau Y (2008) Composites B 39:933

    Google Scholar 

  65. Arslan C, Dogan M (2018) Composites B 146:145

    CAS  Google Scholar 

  66. Taib RM, Ghaleb ZA, Ishak ZAM (2012) J Appl Polym Sci 123:2715

    CAS  Google Scholar 

  67. Tuna B, Ozkoc G (2017) J Polym Environ 25:983

    CAS  Google Scholar 

  68. Zhong W, Ge M, Gu Z, Li W, Chen X, Zang Y, Yang Y (1999) J Appl Polym Sci 74:2546

    CAS  Google Scholar 

  69. Lange FF, Radford KC (1971) J Mater Sci 6:1197

    CAS  Google Scholar 

Download references

Acknowledgements

This study is granted by Turkish Scientific and Technological Research Council (TUBITAK) with the Project Number of 118M203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Dogan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, A., Dogan, M. Production and Characterization of Green Flame Retardant Poly(lactic acid) Composites. J Polym Environ 28, 2837–2850 (2020). https://doi.org/10.1007/s10924-020-01817-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01817-5

Keywords

Navigation