Skip to main content
Log in

Unique Morphology of Polylactide/Poly(ε-Caprolactone) Blends Extruded by Eccentric Rotor Extruder

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, PLA/PCL blends were extruded by either eccentric rotor extruder (ERE) based on extensional flow or twin-screw extruder (TSE) based on shear flow. The morphologies of PLA/PCL blends were investigated. The results showed that PLA/PCL blends showed co-continuous structure with PCL content varying from 20 to 50 wt% when the blends were extruded by ERE, while only 50 wt% PCL blends showed co-continuous structure when extruded by TSE. Furthermore, ERE provided better mixing properties, i.e., better dispersion of minor phase with smaller droplet sizes, promoting the formation of co-continuous structures with lower amounts of minor component. ERE also provided less polymer chain scission than TSE, implying better comprehensive properties of extruded polymers. DSC curves of PLA/PCL blends showed that the cold crystallization temperature (Tcc) of PLA shifted to lower temperature and the crystallinities of PLA increased when the blends were extruded by ERE. Implication of this work is that extensional flow is a more powerful method than shear flow in processing immiscible blends, which has high potential for compounding biobased and biodegradable polymer blends for enhanced properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rondin J, Bouquey M, Muller R et al (2014) Dispersive mixing efficiency of an elongational flow mixer on PP/EPDM blends: morphological analysis and correlation with viscoelastic properties. Polym Eng Sci 54:1444–1457. https://doi.org/10.1002/pen.23667

    Article  CAS  Google Scholar 

  2. Arrington KJ, Haag JV, French EV et al (2019) Toughening cellulose: compatibilizing polybutadiene and cellulose triacetate blends. ACS Macro Lett 8:447–453. https://doi.org/10.1021/acsmacrolett.9b00136

    Article  CAS  PubMed  Google Scholar 

  3. Lee HM, Park OO (1994) Rheology and dynamics of immiscible polymer blends. J Rheol (NY) 38:1405–1425. https://doi.org/10.1122/1.550551

    Article  CAS  Google Scholar 

  4. Fan J, Cao L, Huang J et al (2019) The construction and verification of toughening model and formula of binary poly(lactic acid)-based TPV with co-continuous structure. Mater Chem Phys 231:95–104. https://doi.org/10.1016/j.matchemphys.2019.04.014

    Article  CAS  Google Scholar 

  5. Batch GL, Trifkovic M, Hedegaard A, Macosko CW (2015) Immiscible blend morphology after shear and elongation. AIP Conf Proc. https://doi.org/10.1063/1.4918470

    Article  Google Scholar 

  6. Pötschke P, Paul DR (2003) Formation of co-continuous structures in melt-mixed immiscible polymer blends. J Macromol Sci - Polym Rev 43:87–141. https://doi.org/10.1081/MC-120018022

    Article  CAS  Google Scholar 

  7. Windhab EJ, Dressler M, Feigl K et al (2005) Emulsion processing - From single-drop deformation to design of complex processes and products. Chem Eng Sci 60:2101–2113. https://doi.org/10.1016/j.ces.2004.12.003

    Article  CAS  Google Scholar 

  8. Fischer P, Erni P (2007) Emulsion drops in external flow fields: the role of liquid interfaces. Curr Opin Colloid Interface Sci 12:196–205. https://doi.org/10.1016/j.cocis.2007.07.014

    Article  CAS  Google Scholar 

  9. Guido S, Greco F (2004) Dynamics of a liquid drop in a flowing immiscible liquid. Rheol Rev 2:99–142

    Google Scholar 

  10. Rallison J (1984) The deformation of small viscous drops and bubbles in shear flows. Annu Rev Fluid Mech 16:45–66. https://doi.org/10.1146/annurev.fluid.16.1.45

    Article  Google Scholar 

  11. Stone HA (2003) Dynamics of drop deformation and breakup in viscous flows. Annu Rev Fluid Mech 26:65–102. https://doi.org/10.1146/annurev.fl.26.010194.000433

    Article  Google Scholar 

  12. Briscoe BJ, Lawrence CJ, Mietus WGP (1999) Review of immiscible fluid mixing. Adv Colloid Interface Sci 81:1–17. https://doi.org/10.1016/S0001-8686(99)00002-0

    Article  CAS  Google Scholar 

  13. Minale M (2010) Models for the deformation of a single ellipsoidal drop: a review. Rheol Acta 49:789–806. https://doi.org/10.1007/s00397-010-0442-0

    Article  CAS  Google Scholar 

  14. Janssen PJA, Anderson PD (2011) Modeling film drainage and coalescence of drops in a viscous fluid. Macromol Mater Eng 296:238–248. https://doi.org/10.1002/mame.201000375

    Article  CAS  Google Scholar 

  15. Taylor G (1966) Conical free surfaces and fluid interfaces. Springer, Berlin, pp 790–796

    Google Scholar 

  16. Sun ZB, Song YN, Ma GQ et al (2021) Imparting gradient and oriented characters to cocontinuous structure for improving integrated performance. Macromol Chem Phys 222:1–10. https://doi.org/10.1002/macp.202100012

    Article  CAS  Google Scholar 

  17. Te XuY, Wang Y, Zhou CG et al (2020) An electrically conductive polymer composite with a co-continuous segregated structure for enhanced mechanical performance. J Mater Chem C 8:11546–11554. https://doi.org/10.1039/d0tc02265a

    Article  CAS  Google Scholar 

  18. Decol M, Pachekoski WM, Becker D (2019) Enhancing thermal conductivity and near-infrared radiation reflectance of poly(ε-caprolactone)/poly(lactic acid)-based nanocomposites by incorporating hexagonal boron nitride. Polym Compos 40:3464–3471. https://doi.org/10.1002/pc.25208

    Article  CAS  Google Scholar 

  19. Willemse RC, Posthuma de Boer A, van Dam J, Gotsis AD (1999) Co-continuous morphologies in polymer blends: the influence of the interfacial tension. Polymer (Guildf) 40:827–834. https://doi.org/10.1016/S0032-3861(98)00307-3

    Article  CAS  Google Scholar 

  20. Hengti W, Chen J, Li Y (2020) Arrested elongated interface with small curvature by the simultaneous reactive compatibilization and stereocomplexation. Macromolecules 53:10664–10674. https://doi.org/10.1021/acs.macromol.0c01804

    Article  CAS  Google Scholar 

  21. Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc London Ser A 146:501–523

    Article  CAS  Google Scholar 

  22. Manas-Zloczower I (2009) Manas-Zloczower mixing and compounding of polymers. Mix Compd Polym Theory Pract I-V. https://doi.org/10.3139/9783446433716.fm

    Article  Google Scholar 

  23. Tokihisa M, Yakemoto K, Sakai T et al (2006) Extensional flow mixer for polymer nanocomposites. Polym Eng Sci 46:1040–1050. https://doi.org/10.1002/pen.20542

    Article  CAS  Google Scholar 

  24. Bouquey M, Loux C, Muller R, Bouchet G (2011) Morphological study of two-phase polymer blends during compounding in a novel compounder on the basis of elongational flows. J Appl Polym Sci 119:482–490. https://doi.org/10.1002/app.32645

    Article  CAS  Google Scholar 

  25. Zhang G, Wu T, Lin W et al (2017) Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Compos Sci Technol 145:157–164. https://doi.org/10.1016/j.compscitech.2017.04.005

    Article  CAS  Google Scholar 

  26. Wu T, Yuan D, Qu JP (2018) Preparation of poly(L-lactide)/poly(ethylene glycol)/organo-modified montmorillonite nanocomposites via melt intercalation under continuous elongation flow. J Polym Eng 38:449–460. https://doi.org/10.1515/polyeng-2017-0229

    Article  CAS  Google Scholar 

  27. Hamad K, Kaseem M, Ayyoob M et al (2018) Polylactic acid blends: the future of green, light and tough. Prog Polym Sci 85:83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001

    Article  CAS  Google Scholar 

  28. Ramot Y, Haim-Zada M, Domb AJ, Nyska A (2016) Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev 107:153–162. https://doi.org/10.1016/j.addr.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  29. Xiang S, Jun S, Li G et al (2016) Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide). Chin J Polym Sci (Eng Ed) 34:69–76. https://doi.org/10.1007/s10118-016-1727-2

    Article  CAS  Google Scholar 

  30. Chuaponpat N, Ueda T, Ishigami A et al (2020) Morphology, thermal and mechanical properties of co-continuous porous structure of PLA/PVA blends by phase separation. Polymers (Basel). https://doi.org/10.3390/POLYM12051083

    Article  PubMed Central  Google Scholar 

  31. Yuan D, Chen K, Xu C et al (2014) Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. Carbohydr Polym 113:438–445. https://doi.org/10.1016/j.carbpol.2014.07.044

    Article  CAS  PubMed  Google Scholar 

  32. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  33. Ostafinska A, Fortelny I, Nevoralova M et al (2015) Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv 5:98971–98982. https://doi.org/10.1039/c5ra21178f

    Article  CAS  Google Scholar 

  34. Fortelny I, Ujcic A, Fambri L, Slouf M (2019) Phase structure, compatibility, and toughness of PLA/PCL blends: a review. Front Mater 6:1–13. https://doi.org/10.3389/fmats.2019.00206

    Article  Google Scholar 

  35. Yeh JT, Wu CJ, Tsou CH et al (2009) Study on the crystallization, miscibility, morphology, properties of poly(lactic acid)/poly(ε-caprolactone) blends. Polym - Plast Technol Eng 48:571–578. https://doi.org/10.1080/03602550902824390

    Article  CAS  Google Scholar 

  36. Finotti PFM, Costa LC, Chinelatto MA (2016) Effect of the chemical structure of compatibilizers on the thermal, mechanical and morphological properties of immiscible PLA/PCL blends. Macromol Symp 368:24–29. https://doi.org/10.1002/masy.201600056

    Article  CAS  Google Scholar 

  37. Hao X, Kaschta J, Pan Y et al (2016) Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica. Polymer (Guildf) 82:57–65. https://doi.org/10.1016/j.polymer.2015.11.029

    Article  CAS  Google Scholar 

  38. Sarazin P, Roy X, Favis BD (2004) Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Biomaterials 25:5965–5978. https://doi.org/10.1016/j.biomaterials.2004.01.065

    Article  CAS  PubMed  Google Scholar 

  39. Wu D, Zhang Y, Zhang M, Zhou W (2008) Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur Polym J 44:2171–2183. https://doi.org/10.1016/j.eurpolymj.2008.04.023

    Article  CAS  Google Scholar 

  40. Miles IS, Zurek A (1988) Preparation, structure, and properties of two-phase co-continuous polymer blends. Polym Eng Sci 28:796–805. https://doi.org/10.1002/pen.760281205

    Article  CAS  Google Scholar 

  41. Lacroix C, Grmela M, Carreau PJ (1999) Morphological evolution of immiscible polymer blends in simple shear and elongational flows. J Nonnewton Fluid Mech 86:37–59. https://doi.org/10.1016/S0377-0257(98)00201-8

    Article  CAS  Google Scholar 

  42. Galloway JA, Macosko CW (2004) Comparison of methods for the detection of cocontinuity in poly(ethylene oxide)/polystyrene blends. Polym Eng Sci 44:714–727. https://doi.org/10.1002/pen.20064

    Article  CAS  Google Scholar 

  43. Lemenand T, Dupont P, Della VD, Peerhossaini H (2013) Comparative efficiency of shear, elongation and turbulent droplet breakup mechanisms: Review and application. Chem Eng Res Des 91:2587–2600. https://doi.org/10.1016/j.cherd.2013.03.017

    Article  CAS  Google Scholar 

  44. Wu D, Yuan L, Laredo E et al (2012) Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind Eng Chem Res 51:2290–2298. https://doi.org/10.1021/ie2022288

    Article  CAS  Google Scholar 

  45. Taylor P, Grace HP (2009) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Science (80-) 6445:37–41. https://doi.org/10.1080/00986448208911047

    Article  Google Scholar 

  46. Delaby I, Froelich D, Muller R (1995) Drop deformation in polymer blends during uniaxial elongational flow. Macromol Symp 100:131–135. https://doi.org/10.1002/masy.19951000121

    Article  Google Scholar 

  47. Zumbrunnen DA, Inamdar S (2001) Novel sub-micron highly multi-layered polymer films formed by continuous flow chaotic mixing. Chem Eng Sci 56:3893–3897. https://doi.org/10.1016/S0009-2509(01)00062-8

    Article  CAS  Google Scholar 

  48. Huang ZX, Qu JP (2020) Self-reinforced polyethylene enabled by cyclic pulsating pressure. Polymer (Guildf) 202:122665. https://doi.org/10.1016/j.polymer.2020.122665

    Article  CAS  Google Scholar 

  49. Rizzuto M, Marinetti L, Caretti D et al (2017) Can poly(ϵ-caprolactone) crystals nucleate glassy polylactide? CrystEngComm 19:3178–3191. https://doi.org/10.1039/c7ce00578d

    Article  CAS  Google Scholar 

  50. Erba RD, Groeninckx G, Maglio G, et al (2019) Immiscible polymer blends of semicrystalline biocompatible components : thermal properties and phase morphology analysis of PLLA / PCL blends To cite this version : HAL Id : hal-01998591 Italian National Agency for New Technologies , Energy and Sustainabl

  51. Rizzuto M, Mugica A, Zubitur M et al (2016) Plasticization and anti-plasticization effects caused by poly(lactide-ran-caprolactone) addition to double crystalline poly(l-lactide)/poly(ε-caprolactone) blends. Cryst Eng Comm 18:2014–2023. https://doi.org/10.1039/c5ce02559a

    Article  CAS  Google Scholar 

  52. Kubo H, Okamoto M, Kotaka T (1998) Elongational flow-induced crystallization in supercooled poly(ethylene terephthalate) with different crystallization habit. Polymer (Guildf) 39:4827–4834. https://doi.org/10.1016/S0032-3861(97)10230-0

    Article  CAS  Google Scholar 

  53. Gao XR, Li Y, Huang HD et al (2019) Extensional stress-induced orientation and crystallization can regulate the balance of toughness and stiffness of polylactide films: interplay of oriented amorphous chains and crystallites. Macromolecules 52:5278–5288. https://doi.org/10.1021/acs.macromol.9b00932

    Article  CAS  Google Scholar 

  54. Jabarin SA (1992) Strain-induced crystallization of poly(ethylene terephthalate). Polym Eng Sci 32:1341–1349. https://doi.org/10.1002/pen.760321802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (2019YFC1908202) and the National Natural Science Foundation of China (51873075, 51803029).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hezhi He or Bin Tan.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., He, H., Zhu, Z. et al. Unique Morphology of Polylactide/Poly(ε-Caprolactone) Blends Extruded by Eccentric Rotor Extruder. J Polym Environ 30, 4252–4262 (2022). https://doi.org/10.1007/s10924-022-02503-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02503-4

Keywords

Navigation