Skip to main content
Log in

A Phosphomimetic Study Implicates Ser557 in Regulation of FOXP2 DNA Binding

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

FOXP2 is a transcription factor expressed in multiple tissues during embryonic development. FOXP2 regulates transcription by binding to DNA at its DNA binding domain, the forkhead domain (FHD) through the recognition helix. Ser557 is a residue located within the recognition helix that has the potential to become phosphorylated posttranslationally. In this study we investigated whether phosphorylation of Ser557 can influence the structure and DNA binding of the FOXP2 FHD. We did this by constructing S557E, a phosphomimetic mutant, and comparing its behaviour to the wild type. The mutation did not affect the secondary or tertiary structure of the protein although it did decrease the propensity of the FOXP2 FHD to form dimers. Most notably, the mutation showed significantly reduced DNA binding compared to the wild type as detected using electrophoretic mobility shift assays. Molecular docking was also performed in which the wild type, phosphomimetic mutant and phosphorylated wild-type were docked to DNA and their interactions with DNA were compared. These results indicated that the wild type forms more interactions with the DNA and that the phosphomimetic mutant as well as the phosphorylated wild type did not associate as favourably with the DNA. This indicates that phosphorylation of Ser557 could disrupt DNA binding likely due to electrostatic and steric hindrance. This suggests that phosphorylation of Ser557 in the FOXP2 FHD could act as a control mechanism for FOXP2 and ultimately could be involved in regulation of transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huffman JL, Brennan RG (2002) Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol 12:98–106. https://doi.org/10.1016/S0959-440X(02)00295-6

    Article  CAS  PubMed  Google Scholar 

  2. Latchman S (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29:1305–1312

    Article  CAS  PubMed  Google Scholar 

  3. Benayoun BA, Veitia RA (2009) A post-translational modification code for transcription factors: sorting through a sea of signals. Trends Cell Biol 19:189–197. https://doi.org/10.1016/j.tcb.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  4. Johnson L, Barford D (1993) The effects of phosphorylation on the structure and function of proteins. Annu Rev Biochem 22:199–232

    CAS  Google Scholar 

  5. Tootle TL, Rebay I (2005) Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. BioEssays 27:285–298. https://doi.org/10.1002/bies.20198

    Article  CAS  PubMed  Google Scholar 

  6. Wasylyk C, Bradford A, Gutierrez-Hartmann A, Wasylyk B (1997) Conserved mechanisms of Ras regulation of evolutionary related transcription factors, Ets1 and Pointed P2. Oncogene 14:899–913. https://doi.org/10.1038/sj.onc.1200914

    Article  CAS  PubMed  Google Scholar 

  7. Akira S (1997) IL-6-regulated transcription factors. Int J Biochem Cell Biol 29:1401–1418

    Article  CAS  PubMed  Google Scholar 

  8. Friedman JR, Kaestner KH (2006) The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci 63:2317–2328. https://doi.org/10.1007/s00018-006-6095-6

    Article  CAS  PubMed  Google Scholar 

  9. Clark K, Halay E, Lai E, Burley S (1993) Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420

    Article  CAS  PubMed  Google Scholar 

  10. Wang B, Lin D, Li C, Tucker P (2003) Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem 278:24259–24268. https://doi.org/10.1074/jbc.M207174200

    Article  CAS  PubMed  Google Scholar 

  11. Banham AH, Beasley N, Campo E et al (2001) The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p1. Cancer Res 61:8820–8829

    CAS  PubMed  Google Scholar 

  12. Koh KP, Sundrud MS, Rao A (2009) Domain requirements and sequence specificity of DNA binding for the forkhead transcription factor FOXP3. PLoS ONE 4:1–9. https://doi.org/10.1371/journal.pone.0008109

    Article  CAS  Google Scholar 

  13. Fisher SE, Scharff C (2009) FOXP2 as a molecular window into speech and language. Trends Genet 25:166–177. https://doi.org/10.1016/j.tig.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  14. Spaniel FJ, Horacek J, Tintera I, Ibrahim T, Novak J, Cermak M, Klirova, Hoschl C (2011) Genetic variation in FOXP2 alters grey matter concentrations in schizophrenia patients. Neurosci Lett 493:131–135

    Article  CAS  PubMed  Google Scholar 

  15. Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Witesell L et al (2001) The immune dysregulation polyendocrinopathy enteropathy x-linked syndrome (IPEX) is caused by mutations in FOXP3. Nat Gen 27:20–31

    Article  CAS  Google Scholar 

  17. Gong X, Jia M, Ruan Y, Shuang M, Liu J, Wu S, Guo Y, Yang J, Ling Y, Yang X, Zhang D (2004) Association between the FOXP2 gene and autistic disorder in Chinese population. Am J Med Genet B Neuropsychiatry 127B:113–116

    Article  Google Scholar 

  18. Hachigian LJ, Carmona V, Fenster RJ, Kulicke R, Heilbut A, Sittler A, de Almeida P, Mesirov L, Gao JP, Kolaczyk F, E.D. and Heiman M (2017) Control of Huntington’s disease-associated phenotypes by the striatum enriched transcription factor Foxp2. Cell Rep 21:2688–2695

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Weidenfeld J, Morrisey EE (2004) Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol Cell Biol 24:809–822. https://doi.org/10.1128/MCB.24.2.809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bandukwala HS, Wu Y, Feuerer M et al (2011) Structure of a domain-swapped FOXP3 Dimer on DNA and its function in regulatory T cells. Immunity 34:479–491. https://doi.org/10.1016/j.immuni.2011.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stroud JC, Wu Y, Bates DL et al (2006) Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14:159–166. https://doi.org/10.1016/j.str.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  22. Biggs WH, Meisenhelder J, Hunter T et al (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96:7421–7426. https://doi.org/10.1073/pnas.96.13.7421

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Gan L, Pan H et al (2002) Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms: Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem 277:45276–45284. https://doi.org/10.1074/jbc.M208063200

    Article  CAS  PubMed  Google Scholar 

  24. Obsil T, Obsilova V (2008) Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 27:2263–2275. https://doi.org/10.1038/onc.2008.20

    Article  CAS  PubMed  Google Scholar 

  25. Nie H, Zheng Y, Li R et al (2013) Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med 19:322–328. https://doi.org/10.1038/nm.3085

    Article  CAS  PubMed  Google Scholar 

  26. Berry FB, Tamimi Y, Carle MV et al (2005) The establishment of a predictive mutational model of the forkhead domain through the analyses of FOXC2 missense mutations identified in patients with hereditary lymphedema with distichiasis. Hum Mol Genet 14:2619–2627. https://doi.org/10.1093/hmg/ddi295

    Article  CAS  PubMed  Google Scholar 

  27. Chen YJ, Dominguez-Brauer C, Wang Z et al (2009) A conserved phosphorylation site within the forkhead domain of FoxM1B is required for its activation by cyclin-CDK1. J Biol Chem 284:30695–30707. https://doi.org/10.1074/jbc.M109.007997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shiromizu T, Adachi J, Watanabe S et al (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the phosphositeplus database as part of the chromosome-centric human proteome project. J Proteome Res 12:2414–2421

    Article  CAS  PubMed  Google Scholar 

  29. Lehtinen MK, Yuan Z, Boag PR et al (2006) A Conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125:987–1001. https://doi.org/10.1016/j.cell.2006.03.046

    Article  CAS  PubMed  Google Scholar 

  30. Brent MM, Anand R, Marmorstein R (2008) Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure 16:1407–1416. https://doi.org/10.1016/j.str.2008.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lowy AM (1996) Mutation of phosphoserine 389 affects p53 function in vivo. J Biol Chem 271:29380–29385. https://doi.org/10.1074/jbc.271.46.29380

    Article  PubMed  Google Scholar 

  32. Potter LR, Hunter T (1998) Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol 18:2164–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825. https://doi.org/10.1146/annurev.biochem.78.070907.103047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blane A, Fanucchi S (2015) Effect of pH on the structure and DNA binding of the FOXP2 forkhead domain. Biochemistry 54:4001–4007. https://doi.org/10.1021/acs.biochem.5b00155

    Article  CAS  PubMed  Google Scholar 

  35. Nelson CS, Fuller CK, Fordyce PM et al (2013) Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets. Nucleic Acids Res 41:5991–6004. https://doi.org/10.1093/nar/gkt259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Webb H, Steeb O, Blane A et al (2017) The FOXP2 forkhead domain binds to a variety of DNA sequences with different rates and affinities. J Biochem 162:45–54. https://doi.org/10.1093/jb/mvx003

    Article  CAS  PubMed  Google Scholar 

  37. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:43–46. https://doi.org/10.1093/nar/gkm234

    Article  Google Scholar 

  38. Perumal K, Dirr HW, Fanucchi S (2015) A single amino acid in the hinge loop region of the FOXP Forkhead domain is significant for dimerisation. Protein J 34:111–121. https://doi.org/10.1007/s10930-015-9603-4

    Article  CAS  PubMed  Google Scholar 

  39. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  40. DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 newsletter on protein crystallography, 40:82–92

  41. Dominguez C, Boelens R, Bonvin AMJJ. (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. https://doi.org/10.1021/ja026939x

    Article  CAS  PubMed  Google Scholar 

  42. Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr A D66:12–21

    Google Scholar 

  43. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB III, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375-W383

    Article  PubMed Central  Google Scholar 

  44. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook, pp 571–607

  45. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta - Proteins Proteomics 1751:119–139. https://doi.org/10.1016/j.bbapap.2005.06.005

    Article  CAS  Google Scholar 

  46. Kastritis PL, Bonvin AMJJ (2010) Are scoring functions in protein-protein docking ready to predict interactome? Clues from a novel binding affinity benchmark. J Proteome Res 9:2216–2225. https://doi.org/10.1021/pr9009854

    Article  CAS  PubMed  Google Scholar 

  47. Morris G, Fanucchi S (2016) A key evolutionary mutation enhances DNA binding of the FOXP2 forkhead domain. Biochemistry 55:1959–1967. https://doi.org/10.1021/acs.biochem.5b01271

    Article  CAS  PubMed  Google Scholar 

  48. Hellman L, Fried M (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid anteractions. Nat Protoc 2:1849–1861. https://doi.org/10.1038/nprot.2007.249.Electrophoretic

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sidorova NY, Hung S, Rau DC (2010) Stabilizing labile DNA-protein complexes in polyacrylamide gels. Electrophoresis 31:648–653. https://doi.org/10.1002/elps.200900573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of the Witwatersrand, South African National Research Foundation Grants 80681 and 68898 to S.F. and H.W.D. respectively, the South African Research Chairs Initiative of the Department of Science and Technology Grant 64788 to H.W.D., and the Medical Research Council of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Fanucchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material Figure (TIF 230 KB)

Supplementary material 2 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blane, A., Dirr, H.W. & Fanucchi, S. A Phosphomimetic Study Implicates Ser557 in Regulation of FOXP2 DNA Binding. Protein J 37, 311–323 (2018). https://doi.org/10.1007/s10930-018-9777-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9777-7

Keywords

Navigation