Skip to main content
Log in

Organosiliceous nanotubes with enhanced hydrophobicity and VOCs adsorption performance under dry and humid conditions

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Organosiliceous nanotubes (OSNs) have been successfully prepared by a reverse micelle, then coated with mixed silica sources of tetraethylorthosilicate (TEOS) and 1,2-bis(triethoxysilyl)ethane, (BTSE). The OSNs were analyzed with different apparatuses and used for volatile organic compounds (VOCs) removal. The static pentane, hexane, benzene, toluene, 92# gasoline and water adsorption behaviors on OSNs and marketable activated carbon (AC) and silica gel (SG) were explored. Experimental results showed that the OSN-35% sample (mass ratio BTSE to (BTSE + TEOS) of 35% in feeding process) was uniform nanotubes with the biggest aspect ratio and pore volume had the best static VOCs adsorption capacity (1.35 g g− 1, pentane, 1.63 g g− 1, hexane, 1.68 g g− 1, benzene, 1.83 g g− 1, toluene and 0.973 g g− 1, oil vapor, respectively) and 0.247 g g− 1, water (the smallest). The dynamic monocomponent n-hexane and toluene adsorption performance on OSN-35% was evaluated via breakthrough curves, and the experimental results showed that OSN-35% had longer breakthrough times (tbs) and higher adsorption capacities compared with commercial adsorbents, and OSN-35% is water resistant under wet condition. For binary component (n-hexane and toluene) adsorption, the OSN-35% preferred to adsorb toluene. The larger VOCs capacity of OSNs was co-influenced by the introduction of organic groups, aspect ratio and pore volume. The OSNs with enhanced hydrophobicity and VOCs adsorption behaviors and excellent stability are potential for VOCs adsorption application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Wang, L. Xue, P. Brimblecombe, Y.F. Lam, L. Li, L. Zhang, Sci. Total Environ. 575, 1582–1596 (2017)

    CAS  PubMed  Google Scholar 

  2. H. Guo, Z.H. Ling, H.R. Cheng, I.J. Simpson, X.P. Lyu, X.M. Wang, M. Shao, H.X. Lu, G. Ayoko, Y.L. Zhang, S.M. Saunders, S.H.M. Lam, J.L. Wang, D.R. Blake, Sci. Total Environ. 574, 1021–1043 (2017)

    CAS  PubMed  Google Scholar 

  3. K.-H. Kim, P. Kumar, J.E. Szulejko, A.A. Adelodun, M.F. Junaid, M. Uchimiya, S. Chambers, Chemosphere 174, 268–279 (2017)

    CAS  PubMed  Google Scholar 

  4. R.J. Huang, Y.L. Zhang, C. Bozzetti, K.F. Ho, J.J. Cao, Y.M. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, F. Canonaco, P. Zotter, R. Wolf, S.M. Pieber, E.A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z.S. An, S. Szidat, U. Baltensperger, I. El-Haddad, A.S.H. Prevot, Nature 514, 218–222 (2014)

    CAS  PubMed  Google Scholar 

  5. M. Zamir, R. Halladj, M. Saber, M. Ferdowsi, B. Nasernejad, Clean Soil Air Water 39, 813–819 (2011)

    CAS  Google Scholar 

  6. F.I. Khan, A.K. Ghoshal, J. Loss Prev. Process Ind. 13, 527–545 (2000)

    Google Scholar 

  7. X.J. Hu, S.Z. Qiao, X.S. Zhao, G.Q. Lu, Ind. Eng. Chem. Res. 40, 862–867 (2001)

    CAS  Google Scholar 

  8. D.P. Serrano, G. Calleja, J.A. Botas, F.J. Gutierrez, Ind. Eng. Chem. Res. 43, 7010–7018 (2004)

    CAS  Google Scholar 

  9. M. Guillemot, J. Mijoin, S. Mignard, P. Magnoux, Ind. Eng. Chem. Res. 46, 4614–4620 (2007)

    CAS  Google Scholar 

  10. F. Qu, L. Zhu, K. Yang, J. Hazard. Mater. 170, 7–12 (2009)

    CAS  PubMed  Google Scholar 

  11. X.S. Zhao, Q. Ma, G.Q. Lu, Energy Fuels 12, 1051–1054 (1998)

    CAS  Google Scholar 

  12. S.D. Manjare, A.K. Ghoshal, Ind. Eng. Chem. Res. 45, 6563–6569 (2006)

    CAS  Google Scholar 

  13. Q. Hu, J.J. Li, Z.P. Hao, L.D. Li, S.Z. Qiao, Chem. Eng. J. 149, 281–288 (2009)

    CAS  Google Scholar 

  14. K. Kosuge, S. Kubo, N. Kikukawa, M. Takemori, Langmuir 23, 3095–3102 (2007)

    CAS  PubMed  Google Scholar 

  15. S. Kubo, K. Kosuge, Langmuir 23, 11761–11768 (2007)

    CAS  PubMed  Google Scholar 

  16. Y. Qin, Y. Wang, H.Q. Wang, J.S. Gao, Z.P. Qu, Effect of morphology and pore structure of SBA-15 on toluene dynamic adsorption/desorption performance, in 2013 International Symposium on Environmental Science and Technology. ed. by X. Quan (Elsevier Science Bv, Amsterdam, 2013), pp. 366–371

    Google Scholar 

  17. W.W. Zhang, Z.P. Qu, X.Y. Li, Y. Wang, D. Ma, J.J. Wu, J. Environ. Sci. 24, 520–528 (2012)

    Google Scholar 

  18. B.J. Dou, Q. Hu, J.J. Li, S.Z. Qiao, Z.P. Hao, J. Hazard. Mater. 186, 1615–1624 (2011)

    CAS  PubMed  Google Scholar 

  19. S. Liu, J.J. Chen, Y. Peng, F.Y. Hu, K.Z. Li, H. Song, X. Li, Y.N. Zhang, J.H. Li, Chem. Eng. J. 334, 191–197 (2018)

    CAS  Google Scholar 

  20. S. Liu, Y. Peng, J.J. Chen, W.B. Shi, T. Yan, B. Li, Y.N. Zhang, J.H. Li, J. Mater. Chem. A 6, 13769–13777 (2018)

    CAS  Google Scholar 

  21. I. Batonneau-Gener, A. Yonli, A. Trouve, S. Mignard, M. Guidotti, M. Sgobba, Sep. Purif. Technol. 45, 768–775 (2010)

    CAS  Google Scholar 

  22. M. Hartmann, C. Bischof, J. Phys. Chem. B 103, 6230–6235 (1999)

    CAS  Google Scholar 

  23. H.N. Wang, M. Tang, L. Han, J.Y. Cao, Z.H. Zhang, W.W. Huang, R.Y. Chen, C.Z. Yu, J. Mater. Chem. A 2, 19298–19307 (2014)

    CAS  Google Scholar 

  24. H.N. Wang, M. Tang, K. Zhang, D.F. Cai, W.Q. Huang, R.Y. Chen, C.Z. Yu, J. Hazard. Mater. 268, 115–123 (2014)

    CAS  PubMed  Google Scholar 

  25. H.N. Wang, X. Rong, L. Han, M. Tang, M.H. Yu, J. Zhang, W.Q. Huang, R.Y. Chen, RSC Adv. 5, 5695–5703 (2015)

    CAS  Google Scholar 

  26. Z. Qiang, Y. Guo, H. Liu, S.Z. Cheng, M. Cakmak, K.A. Cavicchi, B.D. Vogt, ACS Appl. Mater. Interfaces 7, 4306–4310 (2015)

    CAS  PubMed  Google Scholar 

  27. Z. Qiang, B. Gurkan, J. Ma, X. Liu, Y. Guo, M. Cakmak, K.A. Cavicchi, B.D. Vogt, Microporous Mesoporous Mater. 227, 57–64 (2016)

    CAS  Google Scholar 

  28. H. Brauer, Y.B. Varma, Air Pollution Control Equipment (Springer, Berlin, 2012)

    Google Scholar 

  29. P.J. Egan, M. Mullin, Nature 532, 357 (2016)

    CAS  PubMed  Google Scholar 

  30. M. Müllner, T. Lunkenbein, J. Breu, F. Caruso, A.H.E. Müller, Chem. Mater. 24, 1802–1810 (2012)

    Google Scholar 

  31. J.C.P. Broekhoff, J.H. De Boer, J. Catal. 9, 8–14 (1967)

    CAS  Google Scholar 

  32. H. Zhu, X. Zhao, G. Lu, D. Do, Langmuir 12, 6513–6517 (1996)

    CAS  Google Scholar 

  33. G.W. Sears, Anal. Chem. 28, 1981–1983 (1956)

    CAS  Google Scholar 

  34. H.N. Wang, Z.P. Li, C. Xu, J. Zhang, W.Q. Huang, R.Y. Chen, Nano Adv. 3, 35–42 (2018)

    Google Scholar 

  35. J.P. Gallas, J.M. Goupil, A. Vimont, J.C. Lavalley, B. Gil, J.P. Gilson, Miserque, Langmuir 25, 5825–5834 (2009)

    CAS  PubMed  Google Scholar 

  36. J.W. Qi, J.S. Li, Y. Li, X.F. Fang, X.Y. Sun, J.Y. Shen, W.Q. Han, L.J. Wang, Chem. Eng. J. 307, 989–998 (2017)

    CAS  Google Scholar 

  37. G.X. Zhang, Y.Y. Liu, S.L. Zheng, Z. Hashisho, J. Hazard. Mater. 364, 317–324 (2019)

    CAS  PubMed  Google Scholar 

  38. Q. Hu, B.J. Dou, H. Tian, J.J. Li, P. Li, Z.P. Hao, Microporous Mesoporous Mater. 129, 30–36 (2010)

    CAS  Google Scholar 

  39. B.J. Dou, J.J. Li, Q. Hu, C.Y. Ma, C. He, P. Li, Q.H. Hu, Z.P. Hao, S.Z. Qiao, Microporous Mesoporous Mater. 133, 115–123 (2010)

    CAS  Google Scholar 

  40. M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, Carbon 43, 1758–1767 (2005)

    CAS  Google Scholar 

  41. T. Garcia, R. Murillo, D. Cazorla-Amoros, A.M. Mastral, A. Linares-Solano, Carbon 42, 1683–1689 (2004)

    CAS  Google Scholar 

  42. S.K. Xian, Y. Yu, J. Xiao, Z.J. Zhang, Q.B. Xia, H.H. Wang, Z. Li, RSC Adv. 5, 1827–1834 (2015)

    CAS  Google Scholar 

  43. V.I. Agueda, B.D. Crittenden, J.A. Delgado, S.R. Tennison, Sep. Purif. Technol. 78, 154–163 (2011)

    CAS  Google Scholar 

  44. J. Ruiz, R. Bilbao, M.B. Murillo, Environ. Sci. Technol. 33, 3774–3780 (1999)

    CAS  Google Scholar 

  45. J. Ruiz, R. Bilbao, M.B. Murillo, Environ. Sci. Technol. 32, 1079–1084 (1998)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundations of China (21571024, 21276029, 11775037 and 51574044), Jiangsu industry foresight and common key technologies-competition project (BE2018065) and the Opening Fund from the Provincial Key Laboratory of Oil & Gas Storage and Transportation Technology, Jiangsu, P. R. China (cy1201).The work was supported by Joint Open Fund of Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiqiu Huang or Ruoyu Chen.

Ethics declarations

Conflicts of interest

All authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, Q., Zhang, Z. et al. Organosiliceous nanotubes with enhanced hydrophobicity and VOCs adsorption performance under dry and humid conditions. J Porous Mater 27, 1179–1190 (2020). https://doi.org/10.1007/s10934-020-00891-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00891-3

Keywords

Navigation