Skip to main content

Advertisement

Log in

Construction of graphitic carbon nitride nanosheets via an improved solvent exfoliation strategy and interfacial mechanics insight from molecular dynamics simulations

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) nanosheets have attracted great attention in the areas of photocatalysis, sensors, energy storages and membrane separations. A three-step exfoliation strategy was designed to use solvent exfoliating g-C3N4 nanosheets from bulk g-C3N4. In the first stage, bulk g-C3N4 was prepared and then exfoliated into g-C3N4 nanosheets by various solvents. In the second stage, molecular dynamics simulations were carried out and the energy barriers for the exfoliations were determined. Various interactions between solvent molecules and exfoliated nanosheet were analyzed. In the third stage, exfoliation was re-carried out according to the result from MD simulation to obtain optimal amount of exfoliated g-C3N4 nanosheets. The experimental result matched with the simulation prediction very well. In combination with simulation and experiment, a successful way to obtain maximum amount of exfoliated g-C3N4 nanosheet was set up. Then a 5.03 mg/mL g-C3N4 suspension was obtained. Meanwhile, a concept of kinetic energy increment was introduced for the first time to explain the exfoliating efficiency of g-C3N4 nanosheets, which greatly reduced the simulation time by 80% compared with the free energies in terms of the potential of mean force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, A.C.S. Appl, Mater. Interfaces 8, 6051 (2016)

    Article  CAS  Google Scholar 

  2. S.L. Li, L. Zhang, X. Zhong, M. Gobbi, S. Bertolazzi, W. Guo, B. Wu, Y. Liu, N. Xu, W. Niu, Y. Hao, E. Orgiu, P. Samorì, ACS Nano 13, 2654 (2019)

    CAS  PubMed  Google Scholar 

  3. Z. Yuan, J.D. Benck, Y. Eatmon, D. Blankschtein, M.S. Strano, Nano Lett. 18, 5057 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Z. Zhang, N. Li, Y. Sun, H. Yang, X. Zhang, Y. Li, G. Wang, J. Zhou, L. Zou, Z. Hao, A.C.S. Appl, Mater. Interfaces 10, 27205 (2018)

    Article  CAS  Google Scholar 

  5. X. Dong, F. Cheng, J. Mater. Chem. A 3, 23642 (2015)

    Article  CAS  Google Scholar 

  6. X. Li, K. Xie, L. Song, M. Zhao, Z. Zhang, A.C.S. Appl, Mater. Interfaces 9, 24577 (2017)

    Article  CAS  Google Scholar 

  7. Y. Wang, L. Li, Y. Wei, J. Xue, H. Chen, L. Ding, J. Caro, H. Wang, Angew. Chem. Int. Ed. 56, 8974 (2017)

    Article  CAS  Google Scholar 

  8. X. Gao, Y. Li, X. Yang, Y. Shang, Y. Wang, B. Gao, Z. Wang, J. Mater. Chem. A 5, 19875 (2017)

    Article  CAS  Google Scholar 

  9. H. Zhao, S. Chen, X. Quan, H. Yu, H. Zhao, Appl. Catal. B 194, 134 (2016)

    Article  CAS  Google Scholar 

  10. J. Wang, M. Li, M. Qian, S. Zhou, A. Xue, L. Zhang, Y. Zhao, W. Xing, Nanoscale Res. Lett. 13, 248 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Y. Li, R. Jin, Y. Xing, J. Li, S. Song, X. Liu, M. Li, R. Jin, Adv. Energy Mater. 6, 1601273 (2016)

    Article  Google Scholar 

  12. X. Du, G. Zou, Z. Wang, X. Wang, Nanoscale 7, 8701 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. K. Zhu, W. Wang, A. Meng, M. Zhao, J. Wang, M. Zhao, D. Zhang, Y. Ji, C. Xu, Z. Li, RSC Adv. 5, 56239 (2015)

    Article  CAS  Google Scholar 

  14. L. Ma, H. Fan, M. Li, J. Fang, D. Dong, J. Mater. Chem. A 3, 22404 (2015)

    Article  CAS  Google Scholar 

  15. P. Niu, L. Zhang, G. Liu, H. Cheng, Adv. Funct. Mater. 22, 4763 (2012)

    Article  CAS  Google Scholar 

  16. Z. Teng, H. Lv, C. Wang, H. Xue, H. Pang, G. Wang, Carbon 113, 63 (2017)

    Article  CAS  Google Scholar 

  17. X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, H. Li, J. Mater. Chem. A 2, 2563 (2014)

    Article  CAS  Google Scholar 

  18. X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 18 (2012)

    Article  PubMed  Google Scholar 

  19. Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Appl. Catal. B 163, 135 (2015)

    Article  CAS  Google Scholar 

  20. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 25, 2452 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Z. Zhou, J. Wang, J. Yu, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, J. Am. Chem. Soc. 137, 2179 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. A. Gupta, V. Arunachalam, S. Vasudevan, J. Phys. Chem. Lett. 7, 4884 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. J. Yang, X. Yang, Y. Li, Curr. Opin. Colloid Interface. Sci. 20, 339 (2015)

    Article  CAS  Google Scholar 

  24. T.K. Mukhopadhyay, A. Datta, J. Phys. Chem. C 121, 811 (2016)

    Article  Google Scholar 

  25. H. Tang, D. Liu, Y. Zhao, X. Yang, J. Lu, F. Cui, J. Phys. Chem. C 119, 26712 (2015)

    Article  CAS  Google Scholar 

  26. C. Fu, X. Yang, Carbon 55, 350 (2013)

    Article  CAS  Google Scholar 

  27. S.L. Stephen, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990)

    Article  Google Scholar 

  28. X.Y. Zou, M. Li, S. Zhou, C.L. Chen, J. Zhong, A. Xue, Y. Zhang, Y. Zhao, J. Membr. Sci. 585, 81 (2019)

    Article  CAS  Google Scholar 

  29. H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang, X. Wang, Adv. Mater. 29, 1700008 (2017)

    Article  Google Scholar 

  30. C.L. Chen, C.L. Lee, H.L. Chen, J.H. Shih, Macromolecules 27, 7872 (1994)

    Article  CAS  Google Scholar 

  31. S.F. Tsai, I.K. Lan, C.L. Chen, Comput. Theor. Polym. Sci. 8, 283 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant Nos. 21878118, 21978109), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos. 18KJA530003, 19KJA430011), Natural Science Foundation of Jiangsu Province (Grant No. BK20171268), Jiangsu Province Qing Lan Project, Jiangsu Province Qing Lan Project for the Young Academic Leaders (2021), and the open project program of Jiangsu Key Lab for Chemistry of Low-Dimensional Materials (Grant No. JSKC17005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yijiang Zhao or Meisheng Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10934_2021_1047_MOESM1_ESM.doc

Supplementary file 1 (DOCX 936 KB) Details of the simulation, UV-vis absorption spectra of g-C3N4, the stability experiments of g-C3N4 nanosheets suspensions and exfoliation energy barrier under different external forces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Zhao, Y., Li, M. et al. Construction of graphitic carbon nitride nanosheets via an improved solvent exfoliation strategy and interfacial mechanics insight from molecular dynamics simulations. J Porous Mater 28, 943–954 (2021). https://doi.org/10.1007/s10934-021-01047-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01047-7

Keywords

Navigation