Skip to main content

Advertisement

Log in

High Energy Milled Ex Situ MgB2 as Precursor for Superconducting Tapes Without Critical Current Anisotropy

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

One lane of the present MgB2 research is focused on scale-up of the conductor preparation for magnet applications. One limitation is the deformation of long length powder in tube conductors since the composite structure leads to a couple of complications. Therefore, a combination of various methods is commonly used: swaging, drawing, and flat rolling. In dense tapes deformed via distinct routes, a critical current anisotropy with respect to an external magnetic field is observed. The in situ method (unreacted Mg+B) is preferably used for conductor preparation, with the advantage offering more doping possibilities for the precursors to create flux pinning centers and to enhance the upper critical field and supporting a dense filament. In this work, we show in concurrence to the commonly preferred route, the possibility and potential of ex situ conductor preparation schemes, with the option of carbon doping, using high energy milling. Long multifilament tapes with 20 hours milled powder without carbon and with 5 wt% C were successfully deformed to wires and tapes. Tapes with 21 cores show critical current densities with J c=104 A/cm2 at B=8.8 T without any current anisotropy in different field-direction different to the case of the in situ conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kario, A., Nast, R., Häßler, W., Rodig, C., Mickel, C., Goldacker, W., Holzapfel, B., Schultz, L.: Supercond. Sci. Technol. 24, 075011 (2011) (7pp)

    Article  ADS  Google Scholar 

  2. Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Zhou, S.H., Ionescu, M., Liu, H.K., Munroe, P., Tomsic, M.: Appl. Phys. Lett. 81, 3419 (2002)

    Article  ADS  Google Scholar 

  3. Sumption, M.D., Bhatia, M., Rindfleisch, M., Tomsic, M., Soltanian, S., Dou, S.X., Collings, E.W.: Appl. Phys. Lett. 86, 092507 (2005)

    Article  ADS  Google Scholar 

  4. Wilke, R.H.T., Budko, S.L., Canfield, P.C., Finnemore, D.K., Suplinskas, R.J., Hannahs, S.T.: Phys. Rev. Lett. 92, 217003 (2004)

    Article  ADS  Google Scholar 

  5. Gruner, W., Herrmann, M., Nilsson, A., Hermann, H., Häßler, W., Holzapfel, B.: Supercond. Sci. Technol. 20, 601–606 (2007)

    Article  ADS  Google Scholar 

  6. Senkowicz, B.J., Giencke, J.E., Patnaik, S., Eom, C.B., Hellstrom, E.E., Larbalestier, D.C.: Appl. Phys. Lett. 86, 202502 (2005)

    Article  ADS  Google Scholar 

  7. Häßler, W., Kovac, P., Eisterer, M., Abrahamsen, A.B., Herrmann, M., Rodig, C., Nenkov, K., Holzapfel, B., Melisek, T., Kulich, M., Zimmermann, M.V., Bednarcik, J., Grivel, J.C.: Supercond. Sci. Technol. 23, 065011 (2010) (6pp)

    Article  ADS  Google Scholar 

  8. Lezza, P., Gladyshevskii, R., Abacherli, V., Flukiger, R.: Supercond. Sci. Technol. 19, 286–289 (2006)

    Article  ADS  Google Scholar 

  9. Kovac, P., Melisek, T., Husek, I.: Supercond. Sci. Technol. 18, L45–L48 (2005)

    Article  ADS  Google Scholar 

  10. Malagoli, A., Braccini, V., Tropeano, M., Vignolo, M., Bernini, C., Fanciulli, C., Romano, G., Putti, M., Ferdeghini, C., Mossang, E., Polyanskii, A., Larbalestier, D.C.: J. Appl. Phys. 104, 103908 (2008)

    Article  ADS  Google Scholar 

  11. Lee, S., Masui, T., Yamamoto, A., Uchiyama, H., Tajima, S.: Physica C 397, 7–13 (2003)

    Article  ADS  Google Scholar 

  12. Senkowicz, B.J.: Dissertation. University of Wisconsin-Madison (2007)

Download references

Acknowledgements

The authors want to thank Juliane Scheiter for technical assistance. This work was funded by the EU-FP6 Research Project “Nanoengineered Superconductors for Power Applications” NESPA No. MRTN-CT-2006-035619.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kario, A., Häßler, W., Rodig, C. et al. High Energy Milled Ex Situ MgB2 as Precursor for Superconducting Tapes Without Critical Current Anisotropy. J Supercond Nov Magn 25, 2337–2341 (2012). https://doi.org/10.1007/s10948-012-1675-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1675-1

Keywords

Navigation