Skip to main content
Log in

Enhanced Magnetic Levitation and Guidance Force in MgB2 Bulks by Synthetic Engine Oil Immersion

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have used ‘Synthetic engine oil’ as a rich easily accessible carbon source and investigated the effect of engine oil on the microstructure, critical current density (Jc), vertical levitation force (Fz) and guidance force (Fx) properties of MgB2 superconductor. The polycrystalline disk-shaped MgB2 bulk samples have been prepared using two-step solid-state reaction process. After the first heating process, MgB2 bulk samples immersed in the engine oil for different durations (30, 120, 300 and 1440 min). XRD analysis indicated the decreasing of lattice parameters of samples and confirmed C substitution in boron sites. Vertical levitation and guidance force measurements were carried out with both Field-cooling (FC) and zero-field-cooling (ZFC) regimes at different temperatures of 20, 24 and 28 K. It was found that engine oil addition slightly increases the levitation and guidance force properties. The \(F_{z}\) values were obtained as 11.17 and 11.58 N for pure and MgB2 sample immersed for 30 min at 20 K in ZFC regime. In addition, the MgB2 sample immersed for 300 min in engine oil showed the highest \(J_{c}\) value of \(5.3\times 10^{4}\) A cm− 2 at 15 K and self-field and showed the highest guidance force value of 4.14 N at 20 K. These finding suggest that synthetic engine oil is a cost-effective and promising method to improve the levitation and guidance force performance as well as the critical current density of MgB2 bulk superconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ozturk, K., Kabaer, M., Abdioğlu, M.: Effect of onboard PM position on the magnetic force and stiffness performance of multi-seed. J. Alloys Compd. 410, 267–273 (2015)

    Article  Google Scholar 

  2. Muralidhar, M., Inoue, K., Koblischka, M., Tomita, M., Murakami, M.: Optimization of processing conditions towards high trapped fields in MgB2 bulks. J. Alloys Compd. 608, 102–109 (2014)

    Article  Google Scholar 

  3. Wu, X., Xu, K., Cao, Y., Hu, S., Zuo, P., Li, G.: Modeling of hysteretic behavior of the levitation force between superconductor and permanent magnet. Phys. C 86, 17–22 (2013)

    Article  ADS  Google Scholar 

  4. Song, H., Haas, O., Beyer, C., Krabbes, G., Verges, P., Schultz, L.: Influence of the lateral movement on the levitation and guidance force in the high-temperature superconductor maglev system. Appl. Phys. Lett. 86, 192506 (2005)

    Article  ADS  Google Scholar 

  5. Yamamoto, A., Ishihara, A., Tomita, M., Kishio, K.: Permanent magnet with MgB2 bulk superconductor. Appl. Phys. Lett. 105, 032601 (2014)

    Article  ADS  Google Scholar 

  6. Askerzade, I.N.: Fluctuation of specific heat in two-band superconductors. J. Supercond. Novel Magn. 24, 275–278 (2011)

    Article  Google Scholar 

  7. Navau, C., Sanchez, A., Pardo, E.: Lateral force in permanent magnet-superconductor levitation systems with high critical current. IEEE Trans. Appl. Supercond. 27, 2185–2188 (2003)

    Article  ADS  Google Scholar 

  8. Wong, D.C.K., Yeoh, W.K., De Silva, K.S.B., Kondyurin, A., Bao, P., Li, W.X., Xu, X., Peleckis, G., Dou, S.X., Ringer, S.P., Zheng, R.K.: Microscopic unravelling of nano-carbon doping in MgB2 superconductors fabricated by diffusion method. J. Alloys Compd. 644, 900–905 (2015)

    Article  Google Scholar 

  9. Vinod, K., Varghese, N., Roy, S.B., Syamaprasad, U.: Significant enhancement of the in-field critical current density of the MgB2 superconductor through codoping of nano-TiC with nano-SiC. Supercond. Sci. Technol. 22, 055009 (2009)

    Article  ADS  Google Scholar 

  10. De Silva, K.S.B., Xu, X., Li, W.X., Zhang, Y., Rindfleisch, M., Tomsic, M.: Improving superconducting properties of MgB2 by graphene doping. IEEE Trans. Appl. Supercond. 21, 2686–2689 (2011)

    Article  ADS  Google Scholar 

  11. Zhao, Y., Feng, Y., Shen, T.M., Li, G., Yang, Y., Cheng, C.H.: Cooperative doping effects of Ti and C on the critical current density and irreversibility field of MgB2. J. Appl. Phys. 100, 123902 (2006)

    Article  ADS  Google Scholar 

  12. Ojha, N., Malik, V.K., Singla, R., Bernhard, C., Varma, G.D.: The effect of citric and oxalic acid doping on the superconducting properties of MgB2. Supercond. Sci. Technol. 22, 125014 (2009)

    Article  ADS  Google Scholar 

  13. Hwang, S.M., Lee, C.M., Lee, S.M., Sung, K., Lim, J.H., Kang, W.N., Kim, C.J.: Study on the improved Jc (B) performance of polyacrylic acid-doped MgB2 bulks. Phys. C 470, 1032–1033 (2010)

    Article  Google Scholar 

  14. Zhang, Z., Suo, H., Ma, L., Liu, M., Zhang, T., Zhou, M.: Study on the effect of doping with poly zinc acrylate complex (PZA) on the superconducting properties of bulk MgB2. IEEE Trans. Appl. Supercond. 20, 1605 (2010)

    Article  ADS  Google Scholar 

  15. Dou, S.X., Shcherbakova, O., Yeoh, W.K., Kim, J.H., Soltanian, S., Wang, X.L., Senatore, C., Flukiger, R., Dhalle, M., Husnjak, O., Babic, E.: Mechanism of enhancement in electromagnetic properties of MgB2 by nano SiC doping. Phys. Rev. Lett. 98, 097002 (2007)

    Article  ADS  Google Scholar 

  16. Viljamaa, J., Kario, A., Dobročka, E., Reissner, M., Kulich, M., Kovač, P., Häßler, W.: Effect of heat treatment temperature on superconducting performance of B4C added MgB2/Nb conductors. Physica C473, 34–40 (2012)

    Article  ADS  Google Scholar 

  17. Savaskan, B., Taylan Koparan, E., Celik, S., Öztürk, K., Yanmaz, E.: Investigation on the levitation force behaviour of malic acid added bulk MgB2 superconductors. Phys. C 502, 63–69 (2014)

    Article  ADS  Google Scholar 

  18. Savaskan, B., Taylan Koparan, E., Güner, S. B., Celik, S., Öztürk, K., Yanmaz, E.: Effect of C4 H 6 O 5 adding on the critical current density and lateral levitation force of bulk MgB2. J. Low Temp. Phys. 181, 38–48 (2015)

    Article  ADS  Google Scholar 

  19. Owrang, F., Mattsson, H., Olsson, J., Pedersen, J.: Investigation of oxidation of mineral and synthetic engine oil. Thermochim. Acta 413, 241–248 (2004)

    Article  Google Scholar 

  20. Denton, J.E.: A review of the potential human and environmental health impacts of synthetic motor oils. PhD Thesis Assessment California Environmental Protection Agency (2007)

  21. Taylan Koparan, E., Savaşkan, B., Yanmaz, E.: Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment. Phys. C 527, 36–40 (2016)

    Article  ADS  Google Scholar 

  22. Celik, S.: Design of magnetic levitation force measurement system at any low temperatures from 20 K to room temperature. J. Alloys Compd. 662, 546–556 (2016)

    Article  Google Scholar 

  23. Kim, J.H., Dou, S.X., Hossain, M.S.A., Xu, X., Wang, J.L., Shi, D.Q., Nakane, T., Kumakura, H.: Systematic study of a MgB2 + C4 H 6 O 5 superconductor prepared by the chemical solution route. Supercond. Sci. Technol. 20, 715–719 (2007)

    Article  ADS  Google Scholar 

  24. Qin, F., Cai, Q., Chen, H.: Partial dissolution of MgO and the effect on critical current density in urea-doped MgB2 bulks. J. Alloys Compd. 633, 201–206 (2015)

    Article  Google Scholar 

  25. Yamamoto, A., Shimoyama, J., Ueda, S., Iwayama, I., Horii, S., Kishio, K.: Effects of B4C doping on critical current properties of MgB2 superconductor. Supercond. Sci. Technol. 18, 1323–1328 (2005)

    Article  ADS  Google Scholar 

  26. Lee, S., Masui, T., Yamamoto, A., Uchiyama, H., Tajima, S.: Carbon-substituted MgB2 single crystals. Phys. C 397, 7–13 (2003)

    Article  ADS  Google Scholar 

  27. Yamamoto, A., Shimoyama, J., Ueda, S., Katsura, Y., Horii, S., Kishio, K.: Improved critical current properties observed in MgB2 bulks synthesized by low-temperature solid-state reaction. Supercond. Sci. Technol. 18, 116–121 (2005)

    Article  ADS  Google Scholar 

  28. Muralidhar, M., Nozaki, K., Kobayashi, H., Zeng, X.L., Koblischka-Veneva, A., Koblischka, M.R., Inoue, K., Murakami, M.: Optimization of sintering conditions in MgB2 material for improvement of critical current density. J. Alloys Compd. 649, 833–842 (2015)

    Article  Google Scholar 

  29. Murakami, M., Oyama, T., Fujimoto, H., Gotoh, S., Yamaguchi, K., Shiohara, Y., Koshizuoka, N., Tanaka, S.: Melt processing of bulk high Tc superconductors and their application. IEEE Trans. Magn. 27, 1479–1486 (1991)

    Article  ADS  Google Scholar 

  30. Tripathi, D., Dey, T.K.: Analysis of the lavitation force of pure and starch/polystyrene/MWCNT added bulk MgB2 superconductors using frozen image model under zero field cooling. Cryogenics 75, 13–18 (2016)

    Article  ADS  Google Scholar 

  31. Erdem, O., Ozturk, K., Guner, S.B., Celik, S., Yanmaz, E.: Effects of initial cooling conditions and measurement heights on the levitation performance of bulk MgB2 superconductor at different measurement temperatures. J. Low Temp. Phys. 177, 28–39 (2014)

    Article  ADS  Google Scholar 

  32. Wu, X., Xu, K., Cao, Y., Hu, S., Zuo, P., Li, G.: Modeling of hysteretic behaviour of the levitation force between superconductor and permanent magnet. Phys. C 486, 17–22 (2013)

    Article  ADS  Google Scholar 

  33. Durell, J.H., Dancer, C.E.J., Dennis, A., Shi, Y., Xu, Z., Campbell, A.M., Babu, N.H., Todd, R.I., Grovenor, C.R.M., Cardwell, D.A.: A trapped field of \(>\)3 T in bulk MgB2 fabricated by unaiaxial hot pressing. Supercond. Sci. Technol. 25, 112002 (2012)

    Article  ADS  Google Scholar 

  34. Liu, W., Wang, J.S., Ma, G.T., Zheng, J., Tuo, X.G., Li, L.L., Ye, C.Q., Liao, X., Land Wang, S.Y.: Influence of lateral displacement on the levitation performance of a magnetized bulk high-Tc superconductor magnet. Phys. C 474, 5–12 (2012)

    Article  ADS  Google Scholar 

  35. Yang, Y., Zheng, X.: Effect of parameters of a high-temperature superconductor levitation system on the lateral force. Supercond. Sci. Technol. 21, 015021 (2008)

    Article  ADS  Google Scholar 

  36. Hull, J.R., Cansz, A.: Vertical and lateral forces between a permanent magnet and a high-temperature superconductor. J. Appl. Phys. 86, 6396–6404 (1999)

    Article  ADS  Google Scholar 

  37. Deng, Z., Zheng, J., Lin, Q., Li, J., Zhang, Y., Wang, S., Wang, J.: Improved maglev performance of bulk high-temperature superconductors with a re-magnetization process after zero-field cooling. J. Low Temp. Phys. 162, 72–79 (2011)

    Article  ADS  Google Scholar 

  38. Aksu, E.: Study of MgB2 phase formation by using XRD, SEM, thermal and magnetic measurements. J. Alloys Compd. 552, 376–381 (2013)

    Article  Google Scholar 

  39. Bhagurkar, A.G., Babu, N.H., Dennis, A.R., Durrell, J.H., Cardwell, D.A.: Characterization of bulk MgB2 synthesized by infiltration and growth. IEEE Trans. Appl. Supercond. 25, 6801504 (2015)

    Article  Google Scholar 

  40. Vajpayee, A., Jha, R., Srivastava, A.K., Kishan, H., Tropeano, M., Ferdeghini, C., Awana, V.P.S.: The effect of synthesis temperature on the superconducting properties of n-SiC added bulk MgB2 superconductor. Supercond. Sci. Technol. 24, 045013 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

All the authors would like to thank Prof. Dr. Ekrem Yanmaz (Karadeniz Technical University, Turkey); Assoc. Prof. Akiyasu Yamamoto (Tokyo University of Agriculture and Technology) and Prof. Dr. Ali Gencer (Ankara University, Ankara, Turkey) for his support and encouragement and Dr. Canan Aksoy for her good effort to contribute on microstructure imaging to this paper (during her visit to Department of Materials at the University of Oxford). This study was supported by the Scientific Research Coordination Unit of Karadeniz Technical University of Turkey, with project no: 13182. Magnetic levitation force measurements at low temperatures were carried out at solid-state research laboratory in Recep Tayyip Erdogan University by using the system which was designed by the project supported by the Scientific and Technological Research Council of Turkey (TUBITAK), with contract number 110T622.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Savaşkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savaşkan, B., Koparan, E.T., Güner, S.B. et al. Enhanced Magnetic Levitation and Guidance Force in MgB2 Bulks by Synthetic Engine Oil Immersion. J Supercond Nov Magn 32, 827–837 (2019). https://doi.org/10.1007/s10948-018-4775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4775-8

Keywords

Navigation