Skip to main content
Log in

Design of Efficient Microwave Absorbers Based on Cobalt-Based MOF/SrFe10CoTiO19/Carbon Nanofibers Nanocomposite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, nanocomposites with microwave absorption capability were synthesized based on cobalt-based MOF/SrFe10CoTiO19/carbon nanofibers. The microstructural, morphological, and magnetic characteristics were examined via X-ray diffraction, field emission scanning electron microscopy, and vibrating sample magnetometer, respectively. The microwave absorption properties of single-layer microwave absorbers were examined in the ku-band frequency range of 12.5–18 GHz. For the single-layer absorbers, the absorption characteristic of nanocomposite of all components is more efficient than that of sample containing just only cobalt-based MOF or doped strontium hexaferrite nanoparticles. The composite containing 70 wt.% cobalt-based MOF, 29 wt.% doped strontium hexaferrite, and 1 wt.% carbon nanofibers nanocomposite reached − 19 dB with 3.9 GHz bandwidth in the range of ku-band with the thicknesses of only 2.5 mm. The addition of carbon nanofibers (CNFs) has increased the interfacial polarization, while dipole polarization enhanced due to interactions between CNFs and Co/C. Capacitor-like structures will be formed due to the dielectric difference between components and so on generates great space-charge polarization. Enhanced in these parameters may be linked to increase in the magnetic and dielectric losses and increase the microwave absorption characteristic. Cobalt-based MOF/SrFe10CoTiO19/carbon nanofiber nanocomposite can be used as a potential candidate for microwave absorbers with strong absorption capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wen, F., Zhang, F., Liu, Z.: Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C. 115(29), 14025–14030 (2011)

    Article  Google Scholar 

  2. Zhang, X.J., Wang, G.S., Cao, W.Q., Wei, Y.Z., Liang, J.F., Guo, L., Cao, M.S.: Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces. 6(10), 7471–7478 (2014)

    Article  Google Scholar 

  3. Wang, Y., Zhang, W., Wu, X., Luo, C., Wang, Q., Li, J., Hu, L.: Conducting polymer coated metal-organic framework nanoparticles: facile synthesis and enhanced electromagnetic absorption properties. Synth. Met. 228, 18–24 (2017)

    Article  Google Scholar 

  4. Han, M., Yin, X., Li, X., Anasori, B., Zhang, L., Cheng, L., Gogotsi, Y.: Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces. 9(23), 20038–20045 (2017)

    Article  Google Scholar 

  5. Li, Z., Han, X., Ma, Y., Liu, D., Wang, Y., Xu, P., et al.: MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6(7), 8904–8913 (2018)

    Article  Google Scholar 

  6. Ding, D., Wang, Y., Li, X., Qiang, R., Xu, P., Chu, W., et al.: Rational design of core-shell Co@ C microspheres for high-performance microwave absorption. Carbon. 111, 722–732 (2017)

    Article  Google Scholar 

  7. ur Rehman, S., Wang, J., Luo, Q., Sun, M., Jiang, L., Han, Q., et al.: Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 373, 122–130 (2019)

    Article  Google Scholar 

  8. Wang, K., Chen, Y., Tian, R., Li, H., Zhou, Y., Duan, H., Liu, H.: Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces. 10(13), 11333–11342 (2018)

    Article  Google Scholar 

  9. Afghahi, S.S.S., Jafarian, M., Salehi, M., Atassi, Y.: Improvement of the performance of microwave X band absorbers based on pure and doped Ba-hexaferrite. J. Magn. Magn. Mater. 421, 340–348 (2017)

    Article  ADS  Google Scholar 

  10. Gunanto, Y.E., Izaak, M.P., Sitompul, H., Adi, W.A.: Composite paint based on barium-strontium-hexaferrite as an absorber of microwaves at X-band frequency. Mater. Today Proc. 13, 1–4 (2019)

    Article  Google Scholar 

  11. Chakradhary, V.K., Akhtar, M.J.: Highly coercive strontium hexaferrite nanodisks for microwave absorption and other industrial applications. Compos. Part B. 183, 107667 (2020)

    Article  Google Scholar 

  12. Narang, S.B., Kunal, P., Chawla, S.K., Kaur, P.: Origin of absorption peaks in reflection loss spectrum in Ku- frequency band of Co-Zr substituted strontium hexaferrites prepared using sucrose precursor. J. Magn. Magn. Mater. 426, 202–205 (2017)

    Article  ADS  Google Scholar 

  13. Paula, A., Rezende, M., Barroso, J.: Experimental measurements and numerical simulation of permittivity and permeability of Teflon in X band. J. Aerosp.Technol. Manag. 3, 59–64 (2011)

    Article  Google Scholar 

  14. Lin, K.Y.A., Chang, H.A.: Zeolitic imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water. J. Taiwan Inst. Chem. Eng. 53, 40–45 (2015)

    Article  Google Scholar 

  15. Sun, W., Zhai, X., Zhao, L.: Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chem. Eng. J. 289, 59–64 (2016)

    Article  Google Scholar 

  16. Qian, J., Sun, F., Qin, L.: Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 82, 220–223 (2012)

    Article  Google Scholar 

  17. Zhou, K., Mousavi, B., Luo, Z., Phatanasri, S., Chaemchuen, S., Verpoort, F.: Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A. 5(3), 952–957 (2017)

    Article  Google Scholar 

  18. Xing, W., Chen, J., Wang, H., Fan, Q., Lei, Q., Xu, G.: Introduction of Zn2+ in BaCoTiFe10O19 to tune electromagnetic parameters and improve microwave absorption properties. J. Alloys Compd. 731, 279–287 (2018)

    Article  Google Scholar 

  19. Alam, R.S., Moradi, M., Nikmanesh, H., Ventura, J., Rostami, M.: Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12− 4xO19 hexaferrite nanoparticles. J. Magn. Magn. Mater. 402, 20–27 (2016)

    Article  ADS  Google Scholar 

  20. Lü, Y., Wang, Y., Li, H., Lin, Y., Jiang, Z., Xie, Z., et al.: MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 7(24), 13604–13611 (2015)

    Article  Google Scholar 

  21. Yin, Y., Liu, X., Wei, X., Yu, R., Shui, J.: Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces. 8(50), 34686–34698 (2016)

    Article  Google Scholar 

  22. Movassagh-Alanagh, F., Jalilian, S., Shemshadi, R., Kavianpour, A.: Fabrication of microwave absorbing Fe3O4/MWCNTs@ CFs nanocomposite by means of an electrophoretic co-deposition process. Synth. Met. 250, 20–30 (2019)

    Article  Google Scholar 

  23. Wang, L., Zhang, J., Zhang, Q.: The effect of MWCNTs on the microwave electromagnetic properties of ferrite–MWCNTs composites. J. Mater. Sci. Mater. Electron. 26(3), 1895–1899 (2015)

    Article  Google Scholar 

  24. Huang, L., Liu, X., Yu, R.: Enhanced microwave absorption properties of rod-shaped Fe2O3/Fe3O4/MWCNTs composites. Prog. Nat. Sci. Mater. Int. 28(3), 288–295 (2018)

    Article  Google Scholar 

  25. Wang, L., Guan, Y., Qiu, X., Zhu, H., Pan, S., Yu, M., Zhang, Q.: Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@ metal–organic framework. Chem. Eng. J. 326, 945–955 (2017)

    Article  Google Scholar 

  26. Inui, T., Konishi, K., Oda, K.: Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites. IEEE Trans. Magn. 35, 3148–3150 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaochen Zheng or Xu Fun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Li, Y. & Fun, X. Design of Efficient Microwave Absorbers Based on Cobalt-Based MOF/SrFe10CoTiO19/Carbon Nanofibers Nanocomposite. J Supercond Nov Magn 33, 2745–2751 (2020). https://doi.org/10.1007/s10948-020-05499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05499-x

Keywords

Navigation