Skip to main content
Log in

Interaction of the La(III)–Morin Complex with Human Serum Albumin

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Lanthanum (La) is one of the most reactive rare earth elements, whose carbonate had been approved by the FDA for marketing as a treatment drug for hyperphosphatemia. In this paper, a complex of La with the natural active compound morin was synthesized and identified. The interaction between synthesized complex (LaMO) and human serum albumin (HSA) was studied by multiple spectroscopic methods. It was found that LaMO has an efficient interaction with HSA through hydrogen bonds and van der Waals forces, with formation of the LaMO–HSA complex in its ground state. The reaction led to quenching of HSA’s fluorescence and the quenching follows a static quenching mechanism. The binding constants, reference state enthalpy change (ΔH θ), Gibbs energy change (ΔG θ) and entropy change (ΔS θ) were calculated at four different temperatures. Fluorescence probe techniques were used to identify the binding location. The results showed that LaMO competes with warfarin for Sudlow’s site I in subdomain IIA of HSA, an acknowledged site marker. Meanwhile, circular dichroism spectrum measurements revealed changes of HSA’s secondary structure in the presence of LaMO, which implies that LaMO is potentially bioactive. The study involves research about the pharmacologic mechanism of rare earth metal coordination compounds and can provide basic data for their safety evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thompson, K.H., Orvig, C.: Editorial: lanthanide compounds for therapeutic and diagnostic applications. Chem. Soc. Rev. 35, 499-499 (2006)

    Google Scholar 

  2. Fricker, S.P.: The therapeutic application of lanthanides. Chem. Soc. Rev. 35, 524–533 (2006)

    Article  CAS  Google Scholar 

  3. Li, T.-R., Yang, Z.-Y., Wang, B.-D., Qin, D.-D.: Synthesis, characterization, antioxidant activity and DNA-binding studies of two rare earth(III) complexes with naringenin-2-hydroxy benzoyl hydrazone ligand. Eur. J. Med. Chem. 43, 1688–1695 (2008)

    Article  Google Scholar 

  4. Xia, J., Gao, J., Inagaki, Y., Kokudo, N., Nakata, M., Tang, W.: Flavonoids as potential anti-hepatocellular carcinoma agents: recent approaches using HepG2 cell line. Drug Discov. Ther. 7, 1–8 (2013)

    Article  Google Scholar 

  5. Pourcel, L., Irani, N.G., Koo, A.J.K., Bohorquez-Restrepo, A., Howe, G.A., Grotewold, E.: A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. Plant J. 74, 383–397 (2013)

    Article  CAS  Google Scholar 

  6. Chaudhuri, S., Sengupta, B., Taylor, J., Pahari, B.P., Sengupta, P.K.: Interactions of dietary flavonoids with proteins: insights from fluorescence spectroscopy and other related biophysical studies. Curr. Drug Metab. 14, 491–503 (2013)

    Article  CAS  Google Scholar 

  7. Song, Y., Yang, P., Yang, M., Kang, J., Qin, S., Lü, B., Wang, L.: Spectroscopic and voltammetric studies of the cobalt(II) complex of morin bound to calf thymus DNA. Transition Met. Chem. 28, 712–716 (2003)

    Article  CAS  Google Scholar 

  8. Qi, Z.-D., Zhang, Y., Liao, F.-L., Ou-Yang, Y.-W., Liu, Y., Yang, X.: Probing the binding of morin to human serum albumin by optical spectroscopy. J. Pharm. Biomed. 46, 699–706 (2008)

    Article  CAS  Google Scholar 

  9. Liu, H., Li, L., Guo, Q., Dong, J., Li, J.: Synthesis, crystal structure, DNA- and albumin-binding properties of a chromium(III) complex with 1,10-phenanthroline and a Schiff base derived from glycine. Transition Met. Chem. 38, 441–448 (2013)

    Article  CAS  Google Scholar 

  10. Zhou, J., Wang, L.-F., Wang, J.-Y., Tang, N.: Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth(III) complexes. J. Inorg. Biochem. 83, 41–48 (2001)

    Article  CAS  Google Scholar 

  11. Song, Y.-M., Xu, J.-P., Ding, L., Hou, Q., Liu, J.-W., Zhu, Z.-L.: Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione. J. Inorg. Biochem. 103, 396–400 (2009)

    Article  CAS  Google Scholar 

  12. Avaji, P., Reddy, B.N., Patil, S., Badami, P.: Synthesis, spectral characterization, biological and fluorescence studies of lanthanum(III) complexes with 3-substituted-4-amino-5-hydrazino-1,2,4-triazole Schiff bases. Transition Met. Chem. 31, 842–848 (2006)

    Article  CAS  Google Scholar 

  13. Zhou, S.-.S., Xue, X., Wang, J.-F., Dong, Y., Jiang, B., Wei, D., Wan, M.-L., Jia, Y.: Synthesis, optical properties and biological imaging of the rare earth complexes with curcumin and pyridine. J. Mater. Chem. 22, 22774–22780 (2012)

    Article  CAS  Google Scholar 

  14. Varshney, A., Rehan, M., Subbarao, N., Rabbani, G., Khan, R.H.: Elimination of endogenous toxin, creatinine from blood plasma depends on albumin conformation: site specific uremic toxicity & impaired drug binding. PLoS ONE 6, 17230 (2011)

    Article  Google Scholar 

  15. Hu, Y.J., Ou-Yang, Y., Bai, A.M., Li, W., Liu, Y.: Investigation of the interaction between ofloxacin and bovine serum albumin: spectroscopic approach. J. Solution Chem. 39, 709–717 (2010)

    Article  CAS  Google Scholar 

  16. Hegde, A., Punith, R., Seetharamappa, J.: Optical, structural and thermodynamic studies of the association of an anti-leucamic drug imatinib mesylate with transport protein. J. Fluoresc. 22, 521–528 (2012)

    Article  CAS  Google Scholar 

  17. Nicoletti, F.P., Howes, B.D., Fittipaldi, M., Fanali, G., Fasano, M., Ascenzi, P., Smulevich, G.: Ibuprofen induces an allosteric conformational transition in the heme complex of human serum albumin with significant effects on heme ligation. J. Am. Chem. Soc. 130, 11677–11688 (2008)

    Article  CAS  Google Scholar 

  18. Curry, S., Mandelkow, H., Brick, P., Franks, N.: Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 5, 827–835 (1998)

    Article  CAS  Google Scholar 

  19. Silva, E., Rousseau, C., Zanella-Cléon, I., Becchi, M., Coleman, A.: Mass spectrometric determination of association constants of bovine serum albumin (BSA) with para-sulphonato-calix[n]arene derivatives. J. Incl. Phenom. Macrocycl. chem. 54, 53–59 (2006)

    Article  Google Scholar 

  20. Ansari, A.A.: Paramagnetic NMR shift, spectroscopic and molecular modeling studies of lanthanide(III)–morin complexes. J. Coord. Chem. 61, 3869–3878 (2008)

    Article  CAS  Google Scholar 

  21. Xiao, J., Wu, M., Kai, G., Wang, F., Cao, H., Yu, X.: ZnO–ZnS QDs interfacial heterostructure for drug and food delivery application: enhancement of the binding affinities of flavonoid aglycones to bovine serum albumin. Nanomedicine 7, 850–858 (2011)

    Article  CAS  Google Scholar 

  22. Xiao, J.: Polyphenol-plasma proteins interaction: its nature, analytical techniques, and influence on bioactivities of polyphenols. Curr. Drug Metab. 14, 367–368 (2013)

    Article  CAS  Google Scholar 

  23. Xiao, J., Kai, G., Chen, X.: Effect of CdTe QDs on the protein–drug interactions. Nanotoxicology 6, 304–314 (2011)

    Article  Google Scholar 

  24. Carter, D.C., Ho, J.X.: The structure of serum albumin. Adv. Protein Chem. 45, 153–203 (1994)

    Article  CAS  Google Scholar 

  25. Hu, Y.J., Ou-Yang, Y., Dai, C.M., Liu, Y., Xiao, X.H.: Site-selective binding of human serum albumin by palmatine: spectroscopic approach. Biomacromolecules 11, 106–112 (2010)

    Article  CAS  Google Scholar 

  26. Zhang, H.-X., Liu, Y.: Protein-binding properties of a designed steroidal lactam compound. Steroids 80, 30–36 (2014)

    Article  CAS  Google Scholar 

  27. Kamat, B.P.: Study of the interaction between fluoroquinolones and bovine serum albumin. J. Pharm. Biomed. 39, 1046–1050 (2005)

    Article  CAS  Google Scholar 

  28. Zhang, H.-X., Liu, E.: Spectroscopic and molecular modeling investigation on the binding of a synthesized steroidal amide to protein. J. Lumin. 153, 182–187 (2014)

    Article  CAS  Google Scholar 

  29. Lehrer, S.S.: Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10, 3254–3263 (1971)

    Article  CAS  Google Scholar 

  30. Ross, P.D., Subramanian, S.: Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20, 3096–3102 (1981)

    Article  CAS  Google Scholar 

  31. Varshney, A., Sen, P., Ahmad, E., Rehan, M., Subbarao, N., Khan, R.H.: Ligand binding strategies of human serum albumin: how can the cargo be utilized? Chirality 22, 77–87 (2010)

    Article  CAS  Google Scholar 

  32. Zhang, J., Sun, H.-H., Zhang, Y.-Z., Yang, L.-Y., Dai, J., Liu, Y.: Interaction of human serum albumin with indomethacin: spectroscopic and molecular modeling studies. J. Solution Chem. 41, 422–435 (2012)

    Article  CAS  Google Scholar 

  33. Sudlow, G., Birkett, D.J., Wade, D.N.: Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 12, 1052–1061 (1976)

    CAS  Google Scholar 

  34. Baroni, S., Mattu, M., Vannini, A., Cipollone, R., Aime, S., Ascenzi, P., Fasano, M.: Effect of ibuprofen and warfarin on the allosteric properties of haem–human serum albumin. Eur. J. Biochem. 268, 6214–6220 (2001)

    Article  CAS  Google Scholar 

  35. Bhattacharya, A.A., Grüne, T., Curry, S.: Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J. Mol. Biol. 303, 721–732 (2000)

    Article  CAS  Google Scholar 

  36. Zhang, H.-X., Mei, P.: Synthesis of morin–zinc(II) complex and its interaction with serum albumin. Biol. Trace Element Res. 143, 677–687 (2011)

    Article  CAS  Google Scholar 

  37. Whitmore, L., Wallace, B.A.: Protein secondary structure analyses from circular dichroism spectroscopy methods and reference databases. Biopolymers 89, 392–400 (2007)

    Article  Google Scholar 

  38. Rogers, D.M., Hirst, J.D.: First-principles calculations of protein circular dichroism in the near ultraviolet. Biochemistry 43, 11092–11102 (2004)

    Article  CAS  Google Scholar 

  39. Boghaei, D.M., Farvid, S.S., Gharagozlou, M.: Interaction of copper(II) complex of compartmental Schiff base ligand N, N’-bis(3-hydroxysalicylidene)ethylenediamine with bovine serum albumin. Spectrochim. Acta A 66, 650–655 (2007)

    Article  Google Scholar 

  40. Gharagozlou, M., Boghaei, D.M.: Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies. Spectrochim. Acta A 71, 1617–1622 (2008)

    Article  Google Scholar 

  41. Zhang, H.-X., Chen, K.-S.: Biophysical studies on the site-selective binding of a synthesized selenium–quercetin complex on a protein. J. Solution Chem. 41, 915–925 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the fund support of the Science and Technology Research Program of the Education Department, Hubei, China (Grants No. Q20134303 and Q20144304) and the Scientific Research Project of Jingchu University of Technology (Grant No. ZR201302; ZR201108). The work is also supported by Hubei Key Laboratory of Drug Synthesis and Optimization (Grant No. OPP2014YB01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, E., Zhang, Hx. Interaction of the La(III)–Morin Complex with Human Serum Albumin. J Solution Chem 43, 1402–1413 (2014). https://doi.org/10.1007/s10953-014-0210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0210-3

Keywords

Navigation