Skip to main content
Log in

Quadrupolar ordering of phospholipid molecules in narrow necks of phospholipid vesicles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Shapes of phospholipid vesicles that involve narrow neck(s) were studied theoretically. It is taken into account that phospholipid molecules are intrinsically anisotropic with respect to the membrane normal and that they exhibit quadrupolar orientational ordering according to the difference between the local principal membrane curvatures. Direct interactions between oriented molecules were considered within a linear approximation of the energy coupling with the deviatoric field. The equilibrium shapes of axisymmetric closed vesicles were studied by minimization of the free energy of the phospholipid bilayer membrane under relevant geometrical constraints. The variational problem was stated by a system of Euler-Lagrange differential equations that revealed a singularity in the derivative of the meridian curvature at points where the effect of the orientational ordering exactly counterbalances the effect of the isotropic bending. The system of Euler-Lagrange differential equations was solved numerically to yield consistently related equilibrium orientational distribution of the phospholipid molecules and vesicle shape. According to our estimation of the model constants the formation of the neck is promoted if direct interactions between the oriented molecules are taken into account. It was shown that the energy of the equilibrium shapes is considerably affected by the quadrupolar ordering of phospholipid molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Nelson and T. Piran (eds.), Statistical Mechanics of Membranes and Surfaces, Jerusalem Winter School, (World Scientific, Singapore, 1989)

    Google Scholar 

  2. P. B. Canham, Minimum energy of bending as a possible explanation of biconcave shape of human red blood cell, J. Theor. Biol. 26:61–81 (1970)

    Article  Google Scholar 

  3. W. Helfrich, Elastic properties of lipid bilayers - theory and possible experiments, Z. Naturforsch 28c:693–703 (1973)

    Google Scholar 

  4. Seifert U. Configurations of fluid membranes and vesicles, Adv. Phys. 46:13–137 (1997)

    Article  ADS  Google Scholar 

  5. H. J. Deuling and W. Helfrich, Curvature elasticity of fluid membranes - catalog of vesicle shapes, J. Phys. (France) 37:1335–1345 (1976)

    Google Scholar 

  6. E. Evans, Bending resistance and chemically induced moments in membrane bilayers, Biophys. J. 14:923– 931 (1974)

    Article  ADS  Google Scholar 

  7. W. Helfrich, Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles, Z. Naturforsch 29c:510–515 (1974)

    Google Scholar 

  8. E. A. Evans and R. Skalak, Mechanics and Thermodynamics of Biomembranes (CRC press, Boca Raton, 1980)

    Google Scholar 

  9. L. Miao, U. Seifert, M. Wortis and H. G. Döbereiner, Budding transitions of fluid-bilayer vesicles: effect of area difference elasticity. Phys. Rev. E 49:5389–5407 (1994)

    Article  ADS  Google Scholar 

  10. B. L. S. Mui, H. G. Döbereiner, T. D. Madden, and P. R. Cullis, Influence of transbilayer asymmetry on the morphology of large unilamellar vesicles, Biophys. J. 69:930–941 (1995)

    Article  ADS  Google Scholar 

  11. H. G. Döbereiner, O. Selchow and R. Lipowsky, Spontaneous curvature of fluid vesicles induced by trans - bilayer sugar asymmetry, Eur. Biophys. J. 28 174–178 (1999)

    Article  Google Scholar 

  12. H. G. Döbereiner, E. Evans, M. Kraus, U. Seifert and M. Wortis, Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory, Phys. Rev. E 55:4458–4474 (1997)

    Article  ADS  Google Scholar 

  13. L. Mathivet, S. Cribier and P. F. Devaux, Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field, Biophys. J. 70:1112–1121 (1996)

    Article  ADS  Google Scholar 

  14. A. Iglič, H. Hägerstrand, M. Bobrowska-Hägerstrand, V. Arrigler, and V. Kralj-Iglič, Possible role of phospholipid nanotubes in directed transport of membrane vesicles, Phys. Lett. A 310:493–497 (2003)

    Article  ADS  Google Scholar 

  15. V. Kralj-Iglič, G. Gomišček, J. Majhenc, V. Arrigler, ans S. Svetina, Myelin–like protrusions of giant phospholipid vesicles prepared by electroformation, Colloids. Surf. A 181:315–318 (2001)

    Article  Google Scholar 

  16. M. S. Spector, A. Singh, P. B. Messersmith, and J. M. Schnur, Chiral self-assembly of nanotubules and ribbons from phospholipid mixtures, Nanoletters 1:375–378 (2001)

    ADS  Google Scholar 

  17. A. Karlsson, R. Karlsson, M. Karlsson, A. Stromberg, F. Ryttsen and O. Orwar, Molecular engineering - networks of nanotubes and containers, Nature 409:150–152 (2001)

    Article  ADS  Google Scholar 

  18. V. Kralj-Iglič, A. Iglič, G. Gomišček, F. Sevšek, V. Arrigler and H. Hägerstrand, Microtubes and nanotubes of a phospholipid bilayer membrane, J. Phys. A: Math. Gen. 35:1533–1549 (2002)

    Article  MATH  ADS  Google Scholar 

  19. D. C. Chang, B. M. Chassy, J. A. Saunders and A. E. Sower eds., Guide to electroporation and electrofusion, (Academic Press, New York, 1992)

    Google Scholar 

  20. E. Neumann, A. E. Sowers and C. A. Jordan eds., Electroporation and electrofusion in cell biology, (Plenum Press, New York and London, 1989)

    Google Scholar 

  21. V. Kralj-Iglič, A. Iglič, H. Hägerstrand and P. Peterlin, Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles, Phys. Rev. E 61:4230–4234 (2000)

    Article  ADS  Google Scholar 

  22. M. Bobrowska-Hägerstrand, V. Kralj-Iglič, A. Iglič, K. Bialkowska, B. Isomaa and H. Hägerstrand, Torocyte membrane endovesicles induced by octaethyleneglycol dodecylether in human erythrocytes, Biophys. J. 77:3356–3362 (1999)

    Article  Google Scholar 

  23. H. Hägerstrand, V. Kralj–Iglič, M. Fošnarič, M. Bobrowska–Hägerstrand, A. Wrobel, L. Mrowczynska, T. Söderström and A. Iglič, Endovesicle formation and membrane perturbation induced by polyoxyethileneglycolalkylethers in human erythrocytes, Biochim. Biophys. Acta 1665:191–200 (2004)

    Article  Google Scholar 

  24. M. Kandušer, M. Fošnarič, M. Šentjurc, V. Kralj-Iglič, H. Hägerstrand, A. Iglič and D. Miklavčič, Effect of surfactant polyoxyethylene glycol (C12E8) on electroporation of cell line DC3F, Colloids Surf. A 214:205–217 (2003)

    Article  Google Scholar 

  25. A. Iglič and V. Kralj-Iglič, Effect of anisotropic properties of membrane constituents on stable shape of membrane bilayer structure, in: H. Ti Tien, A. Ottova-Leitmannova, eds., Planar Lipid Bilayers (BLMs) and Their Applications, (Elsevier, Amsterdam, London, 2003)

    Google Scholar 

  26. M. Fošnarič, V. Kralj-Iglič, K. Bohinc, A. Iglič and S. May, Stabilization of pores in lipid bilayers by anisotropic inclusions, J. Phys. Chem. 107:12519–12526 (2003)

    Google Scholar 

  27. A. Iglič, M. Fošnarič, H. Hägerstrand and V. Kralj-Iglič, Coupling between vesicle shape and the non-homogeneous lateral distribution of membrane constituents in Golgi bodies, FEBS Lett. 574:9–12 (2004)

    Article  Google Scholar 

  28. V. Kralj-Iglič, M. Remškar, G. Vidmar, M. Fošnarič and A. Iglič, Deviatoric elasticity as a possible physical mechanism explaining collapse of inorganic micro and nanotubes, Phys. Lett. 296:151–155 (2002)

    Article  Google Scholar 

  29. J. F. Nagle, Theory of the main lipid bilayer phase transition, Annu. Rev. Phys. Chem. 3:157–195 (1980)

    Article  ADS  Google Scholar 

  30. G. Cevc and D. Marsh, Phospholipid bilayers, (Wiley–Interscience, New York, 1987)

    Google Scholar 

  31. U. Seifert, J. Shillcock and P. Nelson, Role of bilayer tilt difference in equilibrium membrane shapes, Phys. Rev. Lett. 77:5237–5240 (1997)

    Article  ADS  Google Scholar 

  32. H. Nagano, T. Nakanishi, H. Yao and K. Ema, Effect of vesicle size on the heat capacity anomaly at the gel to liquid- crystalline phase transition in unilamellar vesicles of dimiristoylphosphatidylcholine, Phys. Rev. E 52:4244–4250 (1995)

    Article  ADS  Google Scholar 

  33. T. L. Hill, An Introduction to statistical Thermodynamics, (General Publishing Company, Toronto) pp. 209–211(1986)

    Google Scholar 

  34. M. I. Angelova, S. Soleau, Ph. Meleard, J. F. Faucon and P. Bothorel, Preparation of giant vesicles by external AC electric field: kinetics and application, Prog. Colloid Polym. Sci. 89:127–131 (1992)

    Article  Google Scholar 

  35. J. Israelaschvili, Intermolecular and Surface Forces, (Academic Press, London, 1992)

    Google Scholar 

  36. R. Lipowsky, The conformation of membranes, Nature 349:475–481 (1991)

    Article  ADS  Google Scholar 

  37. J. B. Fournier, Nontopological saddle splay and curvature instabilities from anisotropic membrane constituents, Phys. Rev. Lett. 76:4436–4439 (1996)

    Article  ADS  Google Scholar 

  38. V. Kralj–Iglič, V. Heinrich, S. Svetina and B. Žekš, Free energy of closed membrane with anisotropic inclusions, Eur. Phys. J. B 10:5–8 (1999)

    Article  ADS  Google Scholar 

  39. T. Baumgart, S. T. Hess and W. W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature 425:821–824 (2003)

    Article  ADS  Google Scholar 

  40. B. deKruijff, Lipids beyond the bilayer, Nature 386:129–130 (1997)

    Article  ADS  Google Scholar 

  41. S. S. Funari and G. Rapp, A continuous topological change during phase transitions in amphiphile - water systems, Proc. Natl. Acad. Sci. U.S.A. 96:7756–7759 (1999)

    Google Scholar 

  42. M. Rappolt, A. Hickel, F. Bringezu and K. Lohner, Mechanism of the lamellar/inverse hexagonal phase transition examined by high resolution x-ray diffraction, Biophys. J. 84:3111–3222 (2003)

    Article  ADS  Google Scholar 

  43. W. C. Hwang and R. A. Waugh, Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells, Biophys. J. 72:2669–2678 (1997)

    Article  ADS  Google Scholar 

  44. R. M. Raphael and R. E. Waugh, Accelerated interleaflet transport of phosphatidylcholine molecules in membranes under deformation, Biophys. J. 71:1374–1388 (1996)

    Article  ADS  Google Scholar 

  45. B. Babnik, D. Miklavčič, M. Kandušer, H. Hägerstrand, V. Kralj–Iglič and A. Iglič, Shape transformation and burst of giant POPC unilamellar liposomes modulated by nonionic detergent C12E8, Chem. Phys. Lipids 125:123–138 (2003)

    Article  Google Scholar 

  46. T. Fischer, Bending stiffness of lipid bilayers. II. Spontaneous curvature of the monolayers. J. Phys. II (France) 2:327–336 (1992)

    Article  Google Scholar 

  47. T. Fischer, Bending stiffness of lipid bilayers. III. Gaussian curvature, J. Phys. II (France) 3:337–343 (1993)

    Article  Google Scholar 

  48. T. Fischer, Mechanisms for determining the time scales in vesicle budding, Phys. Rev. E 50:4156–4166 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kralj-Iglič, V., Babnik, B., Gauger, D.R. et al. Quadrupolar ordering of phospholipid molecules in narrow necks of phospholipid vesicles. J Stat Phys 125, 727–752 (2006). https://doi.org/10.1007/s10955-006-9051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9051-9

Key words

Navigation