Skip to main content
Log in

Nonlinear Optimal Approach to Spacecraft Formation Flying Using Lorentz and Impulsive Actuation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper proposes an optimal control design framework for hybrid nonlinear time-dependent dynamical systems involving an interacting mixture of continuous-time and discrete-time dynamics. Aiming to extend hybrid linear optimal control synthesis to nonlinear non-quadratic formulation, a hybrid version of the Hamilton–Jacobi–Bellman (HJB) equation with time-dependency is first presented. A hybrid computational framework, which alternates between continuous-time and discrete-time subsystems at an appropriate sequence of time instants, is then developed to solve the resultant set of the HJB equations in an interacting manner. The proposed control scheme is subsequently applied to spacecraft formation flying establishment with a hybrid source of actuation, namely Lorentz force and impulsive thrusting. By optimal combination of the Lorentz force and impulsive thrusting proposed in this paper, not only are the uncontrollability issues pertinent inherently to the Lorentz-actuated control systems effectively resolved, but use of both Lorentz and impulsive control inputs is also optimized. As a consequence, the expendable chemical fuels required to actuate thrusters are significantly reduced, thereby extending the duration of such space missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Atchison, J.A., Peck, M.A.: Lorentz-augmented Jovian Orbit Insertion. J. Guid. Control. Dyn. 32(2), 418–423 (2009). https://doi.org/10.2514/1.38406

    Article  Google Scholar 

  2. Atchison, J.A., Peck, M.A., Streetman, B.J.: Lorentz accelerations in the earth flyby anomaly. J. Guid. Control. Dyn. 33(4), 1115–1122 (2010). https://doi.org/10.2514/1.47413

    Article  Google Scholar 

  3. Beard, R.: Improving the Closed-loop Performance of Nonlinear Systems. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY (1995)

  4. Beard, R., Saridis, G., Wen, J.: Galerkin approximations of the generalized Hamilton–Jacobi–Bellman Equation. Automatica 33(12), 2159–2177 (1997)

    Article  MathSciNet  Google Scholar 

  5. Beard, R., McLain, T.: Successive galerkin approximation algorithms for nonlinear optimal and robust control. Int. J. Control 71(5), 717–743 (1998)

    Article  MathSciNet  Google Scholar 

  6. Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Aerosp. Eng. 27(9), 653–658 (1960). https://doi.org/10.2514/8.8704

    Article  MATH  Google Scholar 

  7. de Ruiter, A.H.J., Damaren, C.J., Forbes, J.R.: Spacecraft Dynamics and Control: An Introduction. Wiley, Hoboken (2013)

    Google Scholar 

  8. Fletcher, C.A.J.: Computational Galerkin Methods. Springer Series in Computational Physics. Springer, New York (1984)

    Book  Google Scholar 

  9. Gangestad, J.W., Pollock, G.E., Longuski, J.M.: Propellantless stationkeeping at Enceladus via the electromagnetic Lorentz force. J. Guid. Control. Dyn. 32(5), 1466–1475 (2009). https://doi.org/10.2514/1.42769

    Article  Google Scholar 

  10. Haddad, W.M., Chellaboina, V., Kablar, N.A.: Nonlinear impulsive dynamical systems. Part II: stability of feedback interconnections and optimality. Int. J. Control. 74(17), 1659–1677 (2001). https://doi.org/10.1080/00207170110080959

    Article  MATH  Google Scholar 

  11. Huang, X., Yan, Y., Zhou, Y., Zhang, H.: Pseudospectral method for optimal propellantless Rendezvous using geomagnetic Lorentz force. Appl. Math. Mech. 36, 609–618 (2015). https://doi.org/10.1007/s10483-015-1936-7

    Article  MathSciNet  Google Scholar 

  12. Kong, E.M.C., Kwon, D.W., Schweighart, S.A., Elias, L.M., Sedwick, R.J., Miller, D.W.: Electromagnetic formation flight for multi-satellite arrays. J. Spacecr. Rocket. 41(4), 659–666 (2004). https://doi.org/10.2514/1.2172

    Article  Google Scholar 

  13. Peck, M.A.: Prospects and challenges for Lorentz-augmented orbits. In: Proceedings of the AIAA guidance, navigation, and control conference, San Francisco, CA, (2005). https://doi.org/10.2514/6.2005-5995

  14. Peck, M.A., Streetman, B.J., Saaj, C.M., Lappas, V.: Spacecraft formation flying using Lorentz forces. J. Br. Interpl. Soc. 60, 263–267 (2007)

    Google Scholar 

  15. Pollock, G.E., Gangestad, J.W., Longuski, J.M.: Inclination change in low-earth orbit via the geomagnetic Lorentz force. J. Guid. Control. Dyn. 33(5), 1387–1395 (2010). https://doi.org/10.2514/1.48610

    Article  Google Scholar 

  16. Pollock, G.E., Gangestad, J.W., Longuski, J.M.: Analytical solutions for the relative motion of spacecraft subject to Lorentz-force perturbations. Acta Astronaut. 68, 204–217 (2011). https://doi.org/10.1016/j.actaastro.2010.07.007

    Article  Google Scholar 

  17. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, New York (2000)

    MATH  Google Scholar 

  18. Sharifi, E., Damaren, C.J.: A numerical approach to hybrid nonlinear optimal control. Int. J. Control. (2020). https://doi.org/10.1080/00207179.2020.1763471

    Article  Google Scholar 

  19. Sobiesiak, L.A., Damaren, C.J.: Optimal continuous/impulsive control for Lorentz-augmented spacecraft formations. J. Guid. Control. Dyn. 38(1), 151–157 (2015). https://doi.org/10.2514/1.G000334

    Article  Google Scholar 

  20. Sobiesiak, L.A., Damaren, C.J.: Impulsive spacecraft formation maneuvers with optimal firing times. J. Guid. Control. Dyn. 38(10), 1994–1999 (2015). https://doi.org/10.2514/1.G001095

    Article  Google Scholar 

  21. Sobiesiak, L.A., Damaren, C.J.: Lorentz-augmented spacecraft formation reconfiguration. IEEE Trans. Control Syst. Technol. 24(2), 514–524 (2016). https://doi.org/10.1109/TCST.2015.2461593

    Article  Google Scholar 

  22. Streetman, B.J., Peck, M.A.: Synchronous orbits and disturbance rejection using the geomagnetic Lorentz force. In: Proceedings of AIAA guidance, navigation, and control conference, keystone, CO (2006)

  23. Streetman, B.J., Peck, M.A.: New synchronous orbits using the geomagnetic Lorentz force. J. Guid. Control. Dyn. 30(6), 1677–1690 (2007). https://doi.org/10.2514/1.29080

    Article  Google Scholar 

  24. Streetman, B.J.: Lorentz-augmented Orbit Dynamics and Mission Design. Ph.D. Thesis, Cornell University, Ithaca, NY, (2008).

  25. Streetman, B.J., Peck, M.A.: Gravity-assist Maneuvers augmented by the Lorentz force. J. Guid. Control. Dyn. 32(5), 1639–1647 (2009). https://doi.org/10.2514/1.35676

    Article  Google Scholar 

  26. Terrestrial Planet Finder: Origins of Stars, Planets, and Life. Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA, (1999)

  27. Vadali, S.R., Schaub, H., Alfriend, K.T.: Initial conditions and fuel-optimal control for formation flying of satellites. In: Proceedings of the AIAA guidance, navigation, and control conference and exhibit, Portland, OR (1999). https://doi.org/10.2514/6.1999-4265

  28. Vaddi, S.S., Vadali, S.R., Alfriend, K.T.: Formation flying: accommodating nonlinearity and eccentricity perturbations. J. Guid. Control. Dyn. 26(2), 214–223 (2003)

    Article  Google Scholar 

  29. Yamakawa, H., Yano, K., Bando, M., Tsujii, S.: Spacecraft relative dynamics under the influence of geomagnetic Lorentz force. In: Proceedings of AIAA/AAS astrodynamics specialist conference, Toronto, ON, (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Sharifi.

Additional information

Communicated by Mauro Pontani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, E., Damaren, C.J. Nonlinear Optimal Approach to Spacecraft Formation Flying Using Lorentz and Impulsive Actuation. J Optim Theory Appl 191, 917–945 (2021). https://doi.org/10.1007/s10957-021-01892-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01892-1

Keywords

Navigation