Skip to main content

Advertisement

Log in

Talagrand Inequality at Second Order and Application to Boolean Analysis

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This note is concerned with an extension, at second order, of an inequality on the discrete cube \(C_n=\{-\,1,1\}^n\) (equipped with the uniform measure) due to Talagrand (Ann Probab 22:1576–1587, 1994). As an application, the main result of this note is a theorem in the spirit of a famous result from Kahn et al. (cf. Proceedings of 29th Annual Symposium on Foundations of Computer Science, vol 62. Computer Society Press, Washington, pp 68–80, 1988) concerning the influence of Boolean functions. The notion of the influence of a couple of coordinates \((i,j)\in \{1,\ldots ,n\}^2\) is introduced in Sect. 2, and the following alternative is obtained: For any Boolean function \(f\,:\, C_n\rightarrow \{0,1\}\), either there exists a coordinate with influence at least of order \((1/n)^{1/(1+\eta )}\), with \(\, 0<\eta <1\) (independent of f and n), or there exists a couple of coordinates \((i,j)\in \{1,\ldots ,n\}^2\) with \(i\ne j\), with influence at least of order \((\log n/n)^2\). In Sect. 4, it is shown that this extension of Talagrand inequality can also be obtained, with minor modifications, for the standard Gaussian measure \(\gamma _n\) on \({\mathbb {R}}^n\); the obtained inequality can be of independent interest. The arguments rely on interpolation methods by semigroup together with hypercontractive estimates. At the end of the article, some related open questions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. In: Grundlehren der Mathematischen Wissenschaften, vol. 348, (2014)

  2. Ben-Or, M., Linial, N.: Collective Coin Flipping, p. 70. Randomness and Computation Academic Press, Cambridge (1990)

    Google Scholar 

  3. Bobkov, S., Götze, F., Houdré, C.: On Gaussian and Bernoulli covariance representations. Bernoulli 7(3), 439–451 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bobkov, S., Götze, F., Sambale, H.: Higher order concentration of measure. Preprint, arXiv:1709.06838, (2017)

  5. Boucheron, T., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independance. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  6. Bouyrie, R.: Private communication. (2017)

  7. Chatterjee, S.: Superconcentration and Related Topics. Springer, Cham (2014)

    Book  Google Scholar 

  8. Cordero-Erausquin, D., Ledoux, M.: Hypercontractive measures, Talagrand’s inequality, and influences. In: Geometric Aspects of Functional Analysis, Lectures Notes in Mathematics, vol. 2050, pp. 169–189, (2012)

  9. Diaconis, P., Saloff-Coste, L.: Logarithmic Sobolev inequalities for finite Markov chains. Ann. Probab. 6(3), 695–750 (1996)

    Article  MathSciNet  Google Scholar 

  10. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124(10), 2993–3002 (1996)

    Article  MathSciNet  Google Scholar 

  11. Garban, Christophe, Steif, Jeffrey E.: Noise Sensitivity of Boolean Functions and Percolation. Institute of Mathematical Statistics Textbooks. Cambridge University Press, New York (2015)

    Book  Google Scholar 

  12. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)

    Article  MathSciNet  Google Scholar 

  13. Houdré, C., Perez-Abreu, V., Surgailis, D.: Interpolation, correlation identities, and inequalities for infinitely divisible variables. J. Fourier Anal. Appl. 4(6), 651–668 (1998)

    Article  MathSciNet  Google Scholar 

  14. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In: Proceedings of 29th Annual Symposium on Foundations of Computer Science, vol. 62, pp. 68–80. Computer Society Press, Washington, (1988)

  15. Keller, N., Mossel, E.: Quantitative relationship between noise sensitivity and influences. Combinatorica 33, 45–71 (2013)

    Article  MathSciNet  Google Scholar 

  16. Keller, N., Mossel, E., Sen, A.: Geometric influences. Ann. Probab. 40(3), 1135–1166 (2012)

    Article  MathSciNet  Google Scholar 

  17. Ledoux, M.: L’algèbre de Lie des gradients itérés d’un générateur markovien - développements de moyenne et entropies. Ann. Sci. Ec. Norm. Super 28(4), 435–460 (1995)

    Article  Google Scholar 

  18. Ledoux, M.: The concentration of measure phenomenon. In: Mathematical Surveys and Monographs, vol. 89, (2001)

  19. Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Isoperimetry and Processes. Springer, Berlin (2011)

    MATH  Google Scholar 

  20. Nelson, E.: The free markov field. J. Funct. Anal. 12, 211–227 (1973)

    Article  Google Scholar 

  21. O’Donnell, R.: Analysis of Boolean functions. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  22. Oleszkiewicz, K.: Private communication. (2018)

  23. Paouris, G., Valettas, P.: Dichotomies, structure, and concentration results. Preprint, arXiv:1708.05149, (2017)

  24. Paouris, G., Valettas, P.: A gaussian small deviation inequality for convex functions. Ann. Probab. 46(3), 1141–1454 (2018)

    Article  MathSciNet  Google Scholar 

  25. Rossignol, R.: Private communication

  26. Talagrand, M.: On Russo’s approximate zero-one law. Ann. Probab. 22, 1576–1587 (1994)

    Article  MathSciNet  Google Scholar 

  27. Tanguy, K.: Some superconcentration inequalities for extrema of stationary gaussian processes. Stat. Probab. Lett. 106, 239–246 (2015)

    Article  MathSciNet  Google Scholar 

  28. Tanguy, K.: Quelques inégalités de superconcentration: théorie et applications (in french). Ph.D. Thesis, Institute of Mathematics of Toulouse, Toulouse (2017)

  29. Tanguy, K.: Non asymptotic variance bounds and deviation inequalities by optimal transport. Electron. J. Probab. 24(12), 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was initiated during my thesis and I thank my Ph.D. advisor M. Ledoux for introducing this problem to me and for fruitful discussions. I am also indebted to K. Oleszkiewicz for several comments and precious advice. I also want to thank C. Houdré for kindly pointing out to me the reference [13] and R. Kumolka for his linguistic help. Finally, I warmly thank the anonymous referee and R. Bouyrie for helpful comments in improving the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Tanguy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanguy, K. Talagrand Inequality at Second Order and Application to Boolean Analysis. J Theor Probab 33, 692–714 (2020). https://doi.org/10.1007/s10959-019-00957-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00957-2

Keywords

Mathematics Subject Classification (2010)

Navigation