Skip to main content
Log in

The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let \( X_{n} \) be \( n\times N \) random complex matrices, and let \(R_{n}\) and \(T_{n}\) be non-random complex matrices with dimensions \(n\times N\) and \(n\times n\), respectively. We assume that the entries of \( X_{n} \) are normalized independent random variables satisfying the Lindeberg condition, \( T_{n} \) are nonnegative definite Hermitian matrices and commutative with \(R_nR_n^*\), i.e., \(T_{n}R_{n}R_{n}^{*}= R_{n}R_{n}^{*}T_{n} \). The general information-plus-noise-type matrices are defined by \(C_{n}=\frac{1}{N}T_{n}^{\frac{1}{2}} \left( R_{n} +X_{n}\right) \left( R_{n}+X_{n}\right) ^{*}T_{n}^{\frac{1}{2}} \). In this paper, we establish the limiting spectral distribution of the large-dimensional general information-plus-noise-type matrices \(C_{n}\). Specifically, we show that as n and N tend to infinity proportionally, the empirical distribution of the eigenvalues of \(C_{n}\) converges weakly to a non-random probability distribution, which is characterized in terms of a system of equations of its Stieltjes transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67(2), 325–327 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Marčenko, V.A., Pastur, L.A.: The eigenvalue distribution in some ensembles of random matrices. Math. USSR Sb. 1, 457–483 (1967)

    Article  Google Scholar 

  3. Yin, Y.Q.: Limiting spectral distribution for a class of random matrices. J. Multivar. Anal. 20(1), 50–68 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Silverstein, J.W.: Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. J. Multivar. Anal. 55(2), 331–339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z., Choi, K.P., Fujikoshi, Y., Hu, J.: Asymptotics AIC, BIC and Cp model selection rules in high-dimensional regression. Bernoulli (2021)

  6. Dozier, R.B., Silverstein, J.W.: On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivar. Anal. 98(4), 678–694 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nadler, B.: Finite sample approximation results for principal component analysis: a matrix perturbation approach. Ann. Stat. 36(6), 2791–2817 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Loubaton, P., Vallet, P.: Almost sure localization of the eigenvalues in a Gaussian information plus noise model. Application to the spiked models. Electron. J. Probab. 16, 1934–1959 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johnstone, I.M., Nadler, B.: Roy’s largest root test under rank-one alternatives. Biometrika 104(1), 181–193 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Bao, Z., Ding, X., Wang, A.K.: Singular vector and singular subspace distribution for the matrix denoising model. Ann. Stat. 49(1), 370–392 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Math. USSR Sb. 1(4), 457 (1967)

    Article  Google Scholar 

  12. Pastur, L.A.: On the spectrum of random matrices. Teor. Mat. Fiz. 10(1), 102–112 (1972)

    Article  MathSciNet  Google Scholar 

  13. Pastur, L.A.: Spectra of random self adjoint operators. Russ. Math. Surv. 28(1), 1–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Silverstein, J.W., Bai, Z.D.: On the empirical distribution of eigenvalues of a class of large dimensional random matrices. J. Multivar. Anal. 54(2), 175–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Silverstein, J.W.: Choi: Analysis of the limiting spectral distribution of large dimensional random matrices. J. Multivar. Anal. 54(2), 295–309 (1995)

    Article  MATH  Google Scholar 

  16. Couillet, R., Debbah, M., Silverstein, J.W.: A deterministic equivalent for the analysis of correlated mimo multiple access channels. IEEE Trans. Inf. Theory 57(6), 3493–3514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wen, C.K., Pan, G.M., Wong, K.K., Guo, M.H., Chen, J.C.: A deterministic equivalent for the analysis of non-Gaussian correlated mimo multiple access channels. IEEE Trans. Inf. Theory 59(1), 329–352 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bai, Z.D., Silverstein, J.W.: No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26(1), 316–345 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bai, Z.D., Silverstein, J.W.: Exact separation of eigenvalues of large dimensional sample covariance matrices. Ann. Probab. 27(3), 1536–1555 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dozier, R.B., Silverstein, J.W.: Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices. J. Multivar. Anal. 98(6), 1099–1122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Billingsley, P.P.: Probability and Measure. Wiley, New York (1995)

    MATH  Google Scholar 

  22. Zhang, L.X.: Spectral Analysis of Large Dimentional Random Matrices. Springer, New York (2007)

    Google Scholar 

  23. Bai, Z.D., Zhang, L.X.: The limiting spectral distribution of the product of the Wigner matrix and a nonnegative definite matrix. J. Multivar. Anal. 101(9), 1927–1949 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bai, Z.D., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  25. Bai, Z.D., Silverstein, J.W.: No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices. Random Matrices: Theory and Applications 1(01), 1150004 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Bai’s research was supported by NSFC No. 12171198 and STDFJ No. 20210101147JC. Hu’s research was supported by NSFC No. 12171078, 11971097 and National Key R &D Program of China No. 2020YFA0714102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Hu.

Ethics declarations

Data

This manuscript has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Lemma A.1

(Theorem A.44. of Bai and Silverstein [24]) For \( n\times N \) matrices P and Q,

$$\begin{aligned} \Vert F^{PP^{*}}-F^{QQ^{*}}\Vert \le \frac{2}{n} \mathrm {rank}(P-Q). \end{aligned}$$

Lemma A.2

Bernstein inequality If \(\{X_1,\dots , X_n\}\) is a sequence of independent random variables with mean zero and uniformly bounded by b, then for any \(\varepsilon >0\), we have

$$\begin{aligned} \mathbf{P}(|S_n |>\varepsilon )\le 2\exp (-\frac{\varepsilon ^2}{2B_n^2 +2b\varepsilon }), \end{aligned}$$

where \( S_n=\sum _{i=1}^{n} X_i \) and \( B_n^2=\mathbf{E}S_n^2 \).

Lemma A.3

(Lemma 2.6 of Silverstein and Bai [14]) Let \(z=u+iv \in {\mathbb {C}}\) with A \( n\times n \) matrix and B Hermitian matrix, and \( r \in {\mathbb {C}}^{n}\). Then

$$\begin{aligned} \begin{aligned} \left|\mathrm {tr}\left( (B-zI)^{-1}-\left( B+rr^{*}-zI\right) ^{-1}\right) A \right|=\left|\frac{r^{*}(B-z I)^{-1} A(B-z I)^{-1} r}{1+r^{*}(B-z I)^{-1} r} \right|\le \frac{ \Vert A\Vert }{v}. \end{aligned} \end{aligned}$$

Lemma A.4

(Corollary A.44. of Bai and Silverstein [24]) Let A and B be two \( p \times n \) matrices and the ESDs of \( S = AA^* \) and \( {\overline{S}} = BB^* \) be denoted by \( F^S \) and \( F^{{\overline{S}}} \). Then,

$$\begin{aligned} L^4(F^S, F^{{\overline{S}}}) \le \frac{2}{p^2} (\mathrm {tr}(AA^* + BB^*)) (\mathrm {tr}(A- B)(A - B)^*) . \end{aligned}$$

where L is the Levy distance between two two-dimensional distribution functions F and G defined by

$$\begin{aligned} L(F, G) = \inf \{\varepsilon : F(x-\varepsilon , y-\varepsilon )-\varepsilon \le G(x, y) \le F(x+\varepsilon , y+\varepsilon )+\varepsilon \}. \end{aligned}$$

Lemma A.5

(Lemma 2.3 of Bai and Silverstein [25]) For \( X = (X_1, \dots , X_n)^T \), with \( X_i \) independent, standardized, and bounded, A a \( n \times n \) matrix, we have for any \( p \ge 2 \)

$$\begin{aligned} \mathbf{E}|X^*A X - \mathrm {tr} A |^p \le \kappa _p(\mathrm {tr} AA^*)^{\frac{p}{2}}. \end{aligned}$$

where \( \kappa _p \) also depends on the bound on the \( X_i \).

Lemma A.6

(Sherman–Morrison formula) For \( n\times n\) matrices A and \( n\times 1 \) vectors q and v, where A and \( A+vv^{*} \) are invertible, one has

$$\begin{aligned} q^{*}(A+vv^{*})^{-1}=q^{*}A^{-1}-\dfrac{q^{*}A^{-1}v}{1+v^{*}A^{-1}v}v^{*}A^{-1}. \end{aligned}$$

When \(q=v \), then

$$\begin{aligned} v^{*}(A+vv^{*})^{-1}=\dfrac{1}{1+v^{*}A^{-1}v}v^{*}A^{-1}. \end{aligned}$$

Lemma A.7

(Theorem A.5 of Bai and Silverstein [24]) If the matrix A and \( A_k \), the k-th major submatrix of A of order \( (n-1) \), are both nonsingular and symmetric, then

$$\begin{aligned} \mathrm {tr}(A^{-1}) - \mathrm {tr}(A_k^{-1}) = \dfrac{1+\alpha _k'A_k^{-2}\alpha _k}{a_{kk} - \alpha _k'A_k^{-1}\alpha _k}. \end{aligned}$$

where \( a_kk \) is the k-th diagonal entry of A, \( \alpha _k' \) is the vector obtained from the k-th row of A, by deleting the k-th entry. If A is Hermitian, then \( \alpha _k' \) is replaces by \( \alpha _k^* \) in equality above.

Lemma A.8

(Lemma 2.12 of [24]) Let \( X_k \) be a complex martingale difference sequence with respect to the increasing \( \sigma \)-field \( \{F_k\} \). Then, for \( p > 1 \),

$$\begin{aligned} \mathbf{E}|\sum X_k|^p \le \kappa _p \mathbf{E}\left( \sum |X_k|^2 \right) ^{\frac{p}{2}}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Bai, Z. & Hu, J. The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices. J Theor Probab 36, 1203–1226 (2023). https://doi.org/10.1007/s10959-022-01193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-022-01193-x

Keywords

Mathematics Subject Classification

Navigation