Skip to main content
Log in

Fabrication of protein-loaded PLGA nanoparticles: effect of selected formulation variables on particle size and release profile

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the processing conditions for fabricating bovine serum albumin (BSA)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles via a water/oil/water double emulsion technique were adjusted and release profiles were studied. Particle size and surface morphology of the BSA-loaded PLGA nanoparticles were comprehensively controlled as a function of processing determinants. The nanoparticles were intended as a carrier for controlled delivery of therapeutic proteins; however, BSA was chosen as a hydrophilic model protein encapsulated within PLGA nanoparticles to investigate the effective formulation parameters. Several key processing parameters were changed including surfactant(s) concentration in the internal and external aqueous phases, BSA concentration, poly(vinyl alcohol) (PVA) characteristics, and power of ultrasonicator probe to investigate their effects on the morphological characteristics and size distribution of the nanoparticles (NPs). The prepared NPs showed spherical shape with smooth and pore-free surfaces along with a relatively narrow particle size distribution. The mean particle size of the optimized formulation was 251.3 ± 8.5 nm, which is ideal for drug delivery applications. Our results demonstrate that using PVA with Mw 13–23 kDa and degree of hydrolysis approximately 87–89 % yields better results than PVA of higher molecular weight and higher degree of hydrolysis. Surfactants concentrations in internal (Span 60) and external phase (Tween 80) of the emulsions, which play a key role in determining NP characteristics and cumulative percentage BSA released, were optimized at 14 % (w/w) and 4 % (w/v), respectively. Optimal level of ultrasonication power (50 W) was also determined. According to the results, the optimized protein-loaded NPs with proper shape, size, and surface properties were prepared and these may act as a good candidate for protein delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lu Y, Chen SC (2004) Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev 56:1621–1633

    Article  CAS  Google Scholar 

  2. Halliday A, Wallace GG, Cook M (2012) Novel methods of antiepileptic drug delivery–polymer-based implants. Adv Drug Deliv Rev 64:953–964

    Article  CAS  Google Scholar 

  3. Winzenburg G, Schmidt C, Fuchs S, Kissel T (2004) Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv Drug Deliv Rev 56:1453–1466

    Article  CAS  Google Scholar 

  4. Budhian A, Siegel SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm 336:367–375

    Article  CAS  Google Scholar 

  5. Thompson CJ, Hansford D, Higgins S, Rostron C, Hutcheon GA, Mundaya DL (2007) Evaluation of ibuprofen-loaded microspheres prepared from novel copolyesters. Int J Pharm 329:53–61

    Article  CAS  Google Scholar 

  6. Bysell H, Månsson R, Hansson P, Malmsten M (2011) Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Deliv Rev 63:1172–1185

    Article  CAS  Google Scholar 

  7. Tan LM, Choong PFM, Dass CR (2010) Review, recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31:184–193

    Article  CAS  Google Scholar 

  8. Floy BJ, Visor GC, Sanders LM (1993) Design of biodegradable polymer systems for controlled release of bioactive agents. In: El-Nokaly MA, Piatt DM, Charpentier BA (eds) Polymeric delivery systems. ACS, Washington, pp 154–167

    Chapter  Google Scholar 

  9. Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y (1993) Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release 25:89–98

    Article  CAS  Google Scholar 

  10. Tabata Y, Gutta S, Langer R (1993) Controlled delivery systems for proteins using polyanhydride microspheres. Pharm Res 10:487–496

    Article  CAS  Google Scholar 

  11. Johnson OL, Cleland JL, Lee HJ, Jones AJS, Putney SD (1996) A month-long effect from a single injection of microencapsulated human growth hormone. Nat Med 7:795–799

    Article  Google Scholar 

  12. Feirong K, Jagdish S (2001) Effects of additives on release of a model protein from PLGA microspheres. AAPS Pharmsci Tech 2:1–7

    Google Scholar 

  13. Ravivarapu HB, Burton K, Deluca PP (2000) Polymer and microspher blending to alter the release of peptide from PLGA microspheres. Eur J Pharm Biopharm 50:263–270

    Article  CAS  Google Scholar 

  14. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  CAS  Google Scholar 

  15. Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133(2):90–95

    Article  CAS  Google Scholar 

  16. Wu L, Ding J (2004) In vitro degradation of three-dimensional porous poly(d,l-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830

    Article  CAS  Google Scholar 

  17. DellaPorta G, Castaldo F, Scognamiglio M, Paciello L, Parascandola P, Reverchona E (2012) Bacteria microencapsulation in PLGA microdevices by supercritical emulsion extraction. J Supercrit Fluids 63:1–7

    Google Scholar 

  18. Lu JM, Wang XW, Marin-Muller C, Wang H, Lin PH, Yao QZ, Chen CY (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341

    Article  CAS  Google Scholar 

  19. Schwendeman SP, Cardamone M, Klibanov A, Langer R (1996) In: Cohen S, Bernstein H (eds) Microparticulate systems for the delivery of proteins and vaccines. Marcel Dekker, New York, pp 1–49

    Google Scholar 

  20. Berkland C, Kim KK, Pack DW (2001) Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J Control Release 73:59–74

    Article  CAS  Google Scholar 

  21. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE (2010) Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62(1):59–82

    Article  CAS  Google Scholar 

  22. Shim MS, Kwon YJ (2012) Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev 64(11):1046–1059

    Article  CAS  Google Scholar 

  23. Prabha S, Zhou WZ, Panyam J, Labhasetwar V (2002) Size-dependency of nanoparticle-mediated gene transfection studies with fractionated nanoparticles. Int J Pharm 244:105–115

    Article  CAS  Google Scholar 

  24. Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and imaging. Curr Opin Solid State Mater Sci 6:319–327

    Article  CAS  Google Scholar 

  25. Kobsa S, Saltzman WM (2008) Bioengineering approaches to controlled protein delivery. Pediatr Res 63(5):513–519

    Google Scholar 

  26. Rosenoer VM (1977) Albumin structure, function and uses. Pergamon, Oxford

    Google Scholar 

  27. Liu Y, Deng X (2002) Influences of preparation conditions on particle size and DNA loading efficiency for poly (DL-lactic acid-polyethylene glycol) microspheres entrapping free DNA. J Control Release 83:147–155

    Article  CAS  Google Scholar 

  28. Márquez AL, Palazolo GG, Wagner JR (2007) Water in oil (w/o) and double (w/o/w) emulsions prepared with spans: microstructure, stability, and rheology. Colloid Polym Sci 285:1119–1128

    Article  Google Scholar 

  29. Khoee S, Yaghoobian M (2009) An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. Eur J Med Chem 44:2392–2399

    Article  CAS  Google Scholar 

  30. Mitchell DJ, Ninham BW (1981) Micelles, vesicles and microemulsions. Chem Soc Faraday Trans II 77:601–629

    Article  CAS  Google Scholar 

  31. Mondal N, Samanta A, Pal TK, Ghosal SK (2008) Effect of different formulation variables on some particle characteristics of poly(DL-lactide-co-glycolide) nanoparticles. Yakugaku Zasshi 128(4):595–601

    Article  CAS  Google Scholar 

  32. Kibbe AH (2000) Handbook of pharmaceutical excipients, 3rd edn. Pharmaceutical Press, Washington

    Google Scholar 

  33. Zhua Y, Zhang G, Yang H, Hong X (2005) Surfactant Deterg 8(4):353–358

    Article  Google Scholar 

  34. Arshady R (1991) Preparation of biodegradable microspheres and microcapsules: 2. Polylactides and related polyesters. J Control Release 17:1–22

    Article  CAS  Google Scholar 

  35. Feczkó T, Tóth J, Gyenis J (2008) Comparison of the preparation of PLGA–BSA nano- and microparticles by PVA, poloxamer and PVP. Colloids Surf A Physicochem Eng Asp 39(1–3):188–195

    Google Scholar 

  36. Feng SS (2004) Nanoparticle of biodegradable polymer for new concept chemotherapy. Expert Rev Med Devices 1(1):115–125

    Article  CAS  Google Scholar 

  37. Jeong Y, Cho C, Kim S, Ko K, Kim S, Shim Y, Nah J (2001) Preparation of poly(DL-lactide-co-glycolide) nanoparticles without surfactant. Appl Polym Sci 80:2228–2236

    Article  CAS  Google Scholar 

  38. Zhang X, Jackson JK, Burt HM (1996) Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int J Pharm 132(1–2):195–206

    Article  CAS  Google Scholar 

  39. Boury F, Ivanova T, Panaiotov I, Proust JE, Bois A, Richou J (1995) Dynamic properties of poly(D,L-lactide) and PVA monolayers at the air/water and dichloromethane air/water interfaces. J Colloid Interf Sci 169:380–392

    Article  CAS  Google Scholar 

  40. Murakami H, Kawashima Y, Niwa T, Hino T, Takeuchi H, Kobayashi M (1997) Influence of the degrees of hydrolyzation and polymerization of PVA on the preparation and properties of PLGA nanoparticles. Int J Pharm 149:43–49

    Article  CAS  Google Scholar 

  41. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, Labrude P, Vigneron C (2000) Influence of experimental parameters on the characteristics of poly(lactid acid) nanoparticles prepared by double emulsion method. J Control Release 50:31–40

    Article  Google Scholar 

  42. Konan YN, Cerny R, Favet J, Berton M, Gurny R, Allemann E (2003) Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm 55:115–124

    Article  CAS  Google Scholar 

  43. Feczkó T, Tóth J, Dósa G, Gyenis J (2011) Influence of process conditions on the mean size of PLGA nanoparticles. Chem Eng Process Process Intensif 50(8):846–853

    Article  Google Scholar 

  44. Yan C, Resau JH, Hewetson J, West M, Rill WL, Kende M (1994) Characterization and morphological analysis of protein-loaded PLGA microparticles prepared by water/oil/water emulsion technique. J Control Release 32:231–241

    Article  CAS  Google Scholar 

  45. Koppolu B, Rahimi M, Nattama S, Wadajkar A, Nguyen KT (2010) Development of multiple-layer polymeric particles for targeted and controlled drug delivery. Nanomedicine 6(2):355–361

    Article  CAS  Google Scholar 

  46. Kang F, Singh J (2003) Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis. Int J Pharm 260:149–156

    Article  CAS  Google Scholar 

  47. Jalil R, Nixon JR (1990) Microencapsulation using poly(L-lactic acid). 2. Preparative variables affecting microcapsule properties. J Microencapsul 7:25–39

    Article  CAS  Google Scholar 

  48. Arakawa T, Kita Y (2000) Stabilizing effects of caprylate and acetyltryptophanate on heat-induced aggregation of bovine serum albumin. Biochim Biophys Acta 1479:32–36

    Article  CAS  Google Scholar 

  49. Clark AH, Saunderson DHP, Suggett A (1981) Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels. Int J Pept Protein Res 17:353–364

    Article  CAS  Google Scholar 

  50. Yang A, Yang L, Liu W, Li Z, Xu H, Yang X (2007) Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Int J Pharm 331:123–132

    Article  CAS  Google Scholar 

  51. Peng ZG, Hidajat K, Uddin MS (2004) Adsorption of bovine serum albumin on nanosized magnetic particles. Colloid Interf Sci 271:277–283

    Article  CAS  Google Scholar 

  52. Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128(12):3939–3945

    Article  CAS  Google Scholar 

  53. Bellusci M, Barbera AL, Padella F, Secci D (2011) Multifunctional ferrite-albumin nano particles in nanomedicine. Energ Ambiente Inneovazione 4–5:80–87

    Google Scholar 

  54. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, 5th edn. Wiley-Interscience, New York

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Iran National Science Foundation (INSF) for the financial assistance (grant no. 89003650) and Iran Polymer and Petrochemical Institute for technical support. We would especially like to thank Dr Manizheh Motavalian for kindly providing freeze-drying facilities during the particle fabrication, and Mrs Khosravi and Mr Pirhajatie for performing SEM and TEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhid Farahmandghavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azizi, M., Farahmandghavi, F., Joghataei, M. et al. Fabrication of protein-loaded PLGA nanoparticles: effect of selected formulation variables on particle size and release profile. J Polym Res 20, 110 (2013). https://doi.org/10.1007/s10965-013-0110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0110-z

Keywords

Navigation