Skip to main content
Log in

Effect of introducing varying amounts of polydopamine particles into different concentrations of polyethersulfone solution on the performance of resultant mixed-matrix membranes intended for dye separation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, polydopamine (PDA) particles were embedded into polyethersulfone (PES) membrane through wet-phase separation. We considered two concentration of PES solution—17 and 19 wt%. Adding different concentration of PDA (0–0.7 wt%) into the two solutions revealed an opposite effect on the characteristic and performance of the membrane. Incorporating PDA particles in 17 wt% PES solution was resulted in a decreased in pure water flux, and increased in dye rejection; Whereas, incorporating PDA particles in 19 wt% PES solution boosted the pure water flux with keep dye rejection of ~99.0%. At the optimum concentration of 0.5 wt% PDA added to 19 wt% PES solution, the following dye rejections were obtained: RMethylene Blue = 99.90 ± 1.45%; RProcion Blue H-5R = 98.33 ± 0.57%; RDirect Red 23 = 99.90 ± 1.82%; RBrilliant Blue = 99.90 ± 0.94%; RRose Bengal = 99.90 ± 0.0%; RDirect Red 80 = 99.12 ± 0.41%; for the salt rejections: (RNaCl = 10.59 ± 5.23%; RNa2SO4 = 8.87 ± 4.99%; RMgCl2 = 10.45 ± 6.85%; RMgSO4 = 10.02 ± 3.87%). This shows that the selectivity of the fabricated membrane towards different dyes and common inorganic salts is high. PDA is a favorable option for fabricating membranes for dye desalination under appropriate PES concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pensupa N, Leu S-Y, Hu Y, Du C, Liu H, Jing H, Wang H, Lin CSK (2017) Recent trends in sustainable textile waste recycling methods: current situation and future prospects. In: Chemistry and Chemical Technologies in Waste Valorization. Springer, pp 189–228. https://doi.org/10.1007/978-3-319-90653-9_7

  2. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366. https://doi.org/10.1016/j.jenvman.2016.07.090

    Article  CAS  Google Scholar 

  3. Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 04(01):22–26. https://doi.org/10.4236/ns.2012.41004

    Article  CAS  Google Scholar 

  4. Koyuncu I, Güney K (2013) Membrane-Based Treatment of Textile Industry Wastewaters. Encyclopedia of Membrane Science and Technology:1–12. https://doi.org/10.1002/9781118522318.emst127

  5. Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254. https://doi.org/10.1016/j.desal.2014.10.043

    Article  CAS  Google Scholar 

  6. Ghaemi N, Madaeni SS, Daraei P, Rajabi H, Shojaeimehr T, Rahimpour F, Shirvani B (2015) PES mixed matrix nanofiltration membrane embedded with polymer wrapped MWCNT: fabrication and performance optimization in dye removal by RSM. J Hazard Mater 298:111–121. https://doi.org/10.1016/j.jhazmat.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  7. Safarpour M, Vatanpour V, Khataee A (2016) Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 393:65–78. https://doi.org/10.1016/j.desal.2015.07.003

    Article  CAS  Google Scholar 

  8. Zhu J, Zhang Y, Tian M, Liu J (2015) Fabrication of a mixed matrix membrane with in situ synthesized Quaternized Polyethylenimine nanoparticles for dye purification and reuse. ACS Sustain Chem Eng 3(4):690–701. https://doi.org/10.1021/acssuschemeng.5b00006

    Article  CAS  Google Scholar 

  9. De Guzman MR, Ang MBMY, Lai C-L, Trilles CA, Pereira JM, Aquino RR, Huang S-H, Lee K-R (2019) Choice of apposite dispersing medium for silica nanoparticles leading to their effective embedment in Nanocomposite Nanofiltration membranes. Ind Eng Chem Res 58(38):17937–17944. https://doi.org/10.1021/acs.iecr.9b03456

    Article  CAS  Google Scholar 

  10. Chiao YH, Patra T, Ang M, Chen ST, Almodovar J, Qian X, Wickramasinghe R, Hung WS, Huang SH, Chang Y, Lai JY (2020) Zwitterion co-polymer PEI-SBMA Nanofiltration membrane modified by fast second interfacial polymerization. Polymers (Basel) 12(2):269. https://doi.org/10.3390/polym12020269

    Article  CAS  Google Scholar 

  11. Zhang H, Li B, Pan J, Qi Y, Shen J, Gao C, Van der Bruggen B (2017) Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt. J Membr Sci 539:128–137. https://doi.org/10.1016/j.memsci.2017.05.075

    Article  CAS  Google Scholar 

  12. Ang MBMY, Ji YL, Huang SH, Lee KR, Lai JY (2019) A facile and versatile strategy for fabricating thin-film nanocomposite membranes with polydopamine-piperazine nanoparticles generated in situ. J Membr Sci 579:79–89. https://doi.org/10.1016/j.memsci.2019.02.064

    Article  CAS  Google Scholar 

  13. Zhao S, Wang Z (2017) A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination. J Membr Sci 524:214–224. https://doi.org/10.1016/j.memsci.2016.11.035

    Article  CAS  Google Scholar 

  14. X-l L, Zhu L-p, J-h J, Yi Z, Zhu B-k, Xu Y-y (2011) Hydrophilic nanofiltration membranes with self-polymerized and strongly-adhered polydopamine as separating layer. Chin J Polym Sci 30(2):152–163. https://doi.org/10.1007/s10118-012-1107-5

    Article  CAS  Google Scholar 

  15. Akbari A, Desclaux S, Rouch JC, Remigy JC (2007) Application of nanofiltration hollow fibre membranes, developed by photografting, to treatment of anionic dye solutions. J Membr Sci 297(1–2):243–252. https://doi.org/10.1016/j.memsci.2007.03.050

    Article  CAS  Google Scholar 

  16. Zhong PS, Widjojo N, Chung T-S, Weber M, Maletzko C (2012) Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater. J Membr Sci 417-418:52–60. https://doi.org/10.1016/j.memsci.2012.06.013

    Article  CAS  Google Scholar 

  17. Chen Q, Yu P, Huang W, Yu S, Liu M, Gao C (2015) High-flux composite hollow fiber nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged crosslinked polyelectrolytes for dye removal. J Membr Sci 492:312–321. https://doi.org/10.1016/j.memsci.2015.05.068

    Article  CAS  Google Scholar 

  18. Wang L, Wang N, Li J, Li J, Bian W, Ji S (2016) Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance. Sep Purif Technol 160:123–131. https://doi.org/10.1016/j.seppur.2016.01.024

    Article  CAS  Google Scholar 

  19. Guo D, Xiao Y, Li T, Zhou Q, Shen L, Li R, Xu Y, Lin H (2020) Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly. J Colloid Interface Sci 560:273–283. https://doi.org/10.1016/j.jcis.2019.10.078

    Article  CAS  PubMed  Google Scholar 

  20. Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membr Sci 453:292–301. https://doi.org/10.1016/j.memsci.2013.10.070

    Article  CAS  Google Scholar 

  21. Qiu Z, Ji X, He C (2018) Fabrication of a loose nanofiltration candidate from Polyacrylonitrile/Graphene oxide hybrid membrane via thermally induced phase separation. J Hazard Mater 360:122–131. https://doi.org/10.1016/j.jhazmat.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  22. Shaban M, AbdAllah H, Said L, Ahmed AM (2019) Water desalination and dyes separation from industrial wastewater by PES/TiO2NTs mixed matrix membranes. J Polym Res 26(8). https://doi.org/10.1007/s10965-019-1831-4

  23. Ibrahim GS, Isloor AM, Moslehyani A, Ismail A (2017) Bio-inspired, fouling resistant, tannic acid functionalized halloysite nanotube reinforced polysulfone loose nanofiltration hollow fiber membranes for efficient dye and salt separation. J Water Process Eng 20:138–148. https://doi.org/10.1016/j.jwpe.2017.09.015

    Article  Google Scholar 

  24. Zeng G, He Y, Zhan Y, Zhang L, Pan Y, Zhang C, Yu Z (2016) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J Hazard Mater 317:60–72. https://doi.org/10.1016/j.jhazmat.2016.05.049

    Article  CAS  PubMed  Google Scholar 

  25. Peydayesh M, Mohammadi T, Bakhtiari O (2018) Effective treatment of dye wastewater via positively charged TETA-MWCNT/PES hybrid nanofiltration membranes. Sep Purif Technol 194:488–502. https://doi.org/10.1016/j.seppur.2017.11.070

    Article  CAS  Google Scholar 

  26. Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H, Beygzadeh M (2014) Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 349:145–154. https://doi.org/10.1016/j.desal.2014.07.007

    Article  CAS  Google Scholar 

  27. Mohammadnezhad F, Feyzi M, Zinadini S (2019) A novel Ce-MOF/PES mixed matrix membrane; synthesis, characterization and antifouling evaluation. J Ind Eng Chem 71:99–111. https://doi.org/10.1016/j.jiec.2018.09.032

    Article  CAS  Google Scholar 

  28. Koulivand H, Shahbazi A, Vatanpour V, Rahmandoust M (2020) Development of carbon dot-modified polyethersulfone membranes for enhancement of nanofiltration, permeation and antifouling performance. Sep Purif Technol 230. https://doi.org/10.1016/j.seppur.2019.115895

  29. Jiang J-H, Zhu L-P, Zhang H-T, Zhu B-K, Xu Y-Y (2014) Improved hydrodynamic permeability and antifouling properties of poly (vinylidene fluoride) membranes using polydopamine nanoparticles as additives. J Membr Sci 457:73–81. https://doi.org/10.1016/j.memsci.2014.01.043

    Article  CAS  Google Scholar 

  30. Wang Y, Zhu J, Dong G, Zhang Y, Guo N, Liu J (2015) Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification. Sep Purif Technol 150:243–251. https://doi.org/10.1016/j.seppur.2015.07.005

    Article  CAS  Google Scholar 

  31. Liang X, Wang P, Wang J, Zhang Y, Wu W, Liu J, Van der Bruggen B (2019) Zwitterionic functionalized MoS2 nanosheets for a novel composite membrane with effective salt/dye separation performance. J Membr Sci 573:270–279. https://doi.org/10.1016/j.memsci.2018.12.015

    Article  CAS  Google Scholar 

  32. Wu C, Zhang G, Xia T, Li Z, Zhao K, Deng Z, Guo D, Peng B (2015) Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities. Mater Sci Eng, C 55:155–165. https://doi.org/10.1016/j.msec.2015.05.032

    Article  CAS  Google Scholar 

  33. García-Ivars J, Corbatón-Báguena M-J, Iborra-Clar M-I (2019) Development of mixed matrix membranes: incorporation of metal nanoparticles in polymeric membranes. In: Nanoscale Materials in Water Purification. Elsevier, pp 153–178

  34. Cheng W, Fan F, Zhang Y, Pei Z, Wang W, Pei Y (2017) A facile approach for fabrication of Core-Shell magnetic molecularly imprinted Nanospheres towards Hypericin. Polymers (Basel) 9(4). https://doi.org/10.3390/polym9040135

  35. Zhu S, Shi M, Zhao S, Wang Z, Wang J, Wang S (2015) Preparation and characterization of a polyethersulfone/polyaniline nanocomposite membrane for ultrafiltration and as a substrate for a gas separation membrane. RSC Adv 5(34):27211–27223. https://doi.org/10.1039/c4ra16951d

    Article  CAS  Google Scholar 

  36. Basri H, Ismail AF, Aziz M (2011) Polyethersulfone (PES)–silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination 273(1):72–80. https://doi.org/10.1016/j.desal.2010.11.010

    Article  CAS  Google Scholar 

  37. Rahimpour A, Jahanshahi M, Mortazavian N, Madaeni SS, Mansourpanah Y (2010) Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening. Appl Surf Sci 256(6):1657–1663. https://doi.org/10.1016/j.apsusc.2009.09.089

    Article  CAS  Google Scholar 

  38. Ismail AF, Lai PY (2003) Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Sep Purif Technol 33(2):127–143. https://doi.org/10.1016/s1383-5866(02)00201-0

    Article  CAS  Google Scholar 

  39. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994. https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  40. Soyekwo F, Liu CK, Wen H, Hu YX (2020) Construction of an electroneutral zinc incorporated polymer network nanocomposite membrane with enhanced selectivity for salt/dye separation. Chem Eng J 380:122560. https://doi.org/10.1016/j.cej.2019.122560

    Article  CAS  Google Scholar 

  41. Nightingale Jr EJTJOPC (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63(9):1381–1387

    Article  CAS  Google Scholar 

  42. Panda SR, De S (2014) Preparation, characterization and performance of ZnCl2 incorporated polysulfone (PSF)/polyethylene glycol (PEG) blend low pressure nanofiltration membranes. Desalination 347:52–65. https://doi.org/10.1016/j.desal.2014.05.030

    Article  CAS  Google Scholar 

  43. Zhu J, Tian M, Zhang Y, Zhang H, Liu J (2015) Fabrication of a novel “loose” nanofiltration membrane by facile blending with chitosan–Montmorillonite nanosheets for dyes purification. Chem Eng J 265:184–193. https://doi.org/10.1016/j.cej.2014.12.054

    Article  CAS  Google Scholar 

  44. Lessan F, Karimi M, Arami M (2016) Tailoring the hierarchical porous structure within polyethersulfone/cellulose nanosheets mixed matrix membrane to achieve efficient dye/salt mixture fractionation. J Polym Res 23(9). https://doi.org/10.1007/s10965-016-1034-1

  45. Zinadini S, Rostami S, Vatanpour V, Jalilian E (2017) Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J Membr Sci 529:133–141. https://doi.org/10.1016/j.memsci.2017.01.047

    Article  CAS  Google Scholar 

  46. Rahimi M, Dadari S, Zeinaddini S, Mohamadian E (2017) Flux, antifouling and separation characteristics enhancement of nanocomposite polyethersulfone mixed-matrix membrane by embedding synthesized hydrophilic adipate ferroxane nanoparticles. Korean J Chem Eng 34(5):1444–1455. https://doi.org/10.1007/s11814-017-0031-3

    Article  CAS  Google Scholar 

  47. Low Z-X, Ji J, Blumenstock D, Chew Y-M, Wolverson D, Mattia D (2018) Fouling resistant 2D boron nitride nanosheet – PES nanofiltration membranes. J Membr Sci 563:949–956. https://doi.org/10.1016/j.memsci.2018.07.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the Ministry of Science and Technology of Taiwan (MOST 106-2221-E-033-062-MY3, MOST 106-2218-E-033-010, MOST 108-2811-E-033-501, 108-2622-E-197-011-CC3), and Department of Science and Technology-Engineering Research and Development for Technology of the Philippines.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Micah Belle Marie Yap Ang, Shu-Hsien Huang or Kueir-Rarn Lee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Micah Belle Marie Yap Ang and Hazel Lynn C. Maganto are co-first authors

Electronic supplementary material

ESM 1

(PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ang, M.B.M.Y., Maganto, H.L.C., Macni, C.R.M. et al. Effect of introducing varying amounts of polydopamine particles into different concentrations of polyethersulfone solution on the performance of resultant mixed-matrix membranes intended for dye separation. J Polym Res 27, 196 (2020). https://doi.org/10.1007/s10965-020-02174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02174-6

Keywords

Navigation