Skip to main content

Advertisement

Log in

Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, a pH-sensing electrospun mat containing purple cabbage (PC) (Brassica oleracea) anthocyanins was developed for wound dressing application. The pH-sensing electrospun mat was prepared from sodium alginate (Alg) and poly (vinyl alcohol) (PVA) via electrospinning. PC anthocyanins were embedded into the electrospun mat with the addition of PC extract into the Alg/PVA electrospun solution. The characterization studies were conducted by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), water contact angle (WCA) and thickness measurements. The halochromic behavior of the pH-sensing Alg/PVA/PC electrospun mat was elucidated via UV–Vis spectrophotometric analyses and color measurements obtained from quantitative color data. In vivo performance of the pH-sensing mat was evaluated by animal studies. The electrospun mat was successfully used to monitor pH changes of an open wound. In addition, wound healing efficacy of the electrospun mat was compared with a commercial wound dressing. The results revealed that a wound dressing benefiting from halochromic properties of the anthocyanins besides wound healing efficacy of Alg was successfully developed. The pH-sensing Alg/PVA/PC electrospun mat has a usage potential for wound dressing applications especially for monitoring wound status on real-time during healing period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  2. Gilmore MA (1991) Phases of wound healing Dimens Oncol Nurs. Fall 5:32–34

  3. Rieger KA, Birch NP, Schiffman JD (2013) Designing electrospun nanofiber mats to promote wound healing – a review. J Mater Chem B 1:4531–4541

    Article  CAS  PubMed  Google Scholar 

  4. Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Europan Polymer J 41:423–432

    Article  CAS  Google Scholar 

  5. Fu R, Li C, Yu C, Xie H, Shi S, Li Z, Wang Q, Lu L (2016) A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/ sodium alginate for antibacterial wound dressings in practical application. Drug Deliv 23(3):828–839

    Article  PubMed  Google Scholar 

  6. Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP, Jayakumar R (2011) Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 49(3):247–254

    Article  CAS  PubMed  Google Scholar 

  7. Mohammadi S, Ramakrishna S, Laurent S, Shokrgozar MA, Semnani D, Sadeghi D, Bonakdar S, Akbari M (2019) Fabrication of nanofibrous PVA/Alginate-sulfate substrates for growth factor delivery. J Biomed Mater Res Part A 107:403–413

    Article  CAS  Google Scholar 

  8. Taemeh MA, Shiravandi A, Korayem MA, Daemi H (2020) Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr Polym 228:115419

    Article  CAS  PubMed  Google Scholar 

  9. Hong Y, Shang T, Li Y, Wang L, Wang C, Chen X, Jing X (2006) Synthesis using electrospinning and stabilization of single layer macroporous films and fibrous networks of poly (vinyl alcohol). J Membr Sci 276:1–7

    Article  CAS  Google Scholar 

  10. Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I (2006) Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly (vinyl alcohol). Carbohydr Res 341:2098–2107

    Article  CAS  PubMed  Google Scholar 

  11. Ren G, Xu X, Liu Q, Cheng J, Yuan X, Wu L, Wan Y (2006) Electrospun poly (vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym 66:1559–1564

    Article  CAS  Google Scholar 

  12. Üstündağ GC, Karaca E, Özbek S, Çavuşoğlu İ (2010) In vivo evaluation of electrospun poly (vinyl alcohol)/sodium alginate electrospun mat as wound dressing. Tekst Konfeksiyon 20:290–298

    Google Scholar 

  13. Coşkun G, Karaca E, Ozyurtlu M, Ozbek S, Yermezler A, Cavuşoğlu I (2014) Histological evaluation of wound healing performance of electrospun poly(vinyl alcohol)/sodium alginate as wound dressing in vivo. Biomed Mater Eng 24:1527–1536

    PubMed  Google Scholar 

  14. Han X, Huo P, Ding Z, Kumar P, Liu B (2019) Preparation of lutein-loaded PVA/sodium alginate nanofibers and investigation of its release behavior. Pharmaceutics 11:449

    Article  CAS  PubMed Central  Google Scholar 

  15. Aadil KR, Nathani A, Sharma CS, Lenka N, Gupta P (2018) Fabrication of biocompatible alginate-poly(vinyl alcohol) nanofibers scaffolds for tissue engineering applications. Mater Technol 33:507–512

    Article  CAS  Google Scholar 

  16. Schneider LA, Körber A, Grabbe S, Dissemond J (2007) Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res 298:413–420

    Article  PubMed  Google Scholar 

  17. Gethin G (2007) The significance of surface pH in chronic wounds. Wounds UK 3:52–56

    Google Scholar 

  18. Wilson IA, Henry M, Quill RD, Byrne PJ (1979) The pH of varicose ulcer surfaces and its relationship to healing. VASA 8:339–342

    CAS  PubMed  Google Scholar 

  19. Romanelli M, Schipani E, Piaggesi A, Barachini P (1997) Evaluation of surface pH on venous leg ulcers under Allevyn Dressings. Royal Society of Medicine Press, London

    Google Scholar 

  20. Dissemond J, Witthoff M, Brauns T, Haberer D, Goos M (2003) pH values in chronic wounds. Evaluation during modern wound therapy. Hautarzt 54:959–965

    CAS  PubMed  Google Scholar 

  21. Sharp D (2013) Printed composite electrodes for in-situ wound pH monitoring. Biosens Bioelectron 50:399–405

    Article  CAS  PubMed  Google Scholar 

  22. Trupp S, Alberti M, Carofiglio T, Lubian E, Lehmann H, Heuermann R, George EY, Bock K, Mohr GJ (2010) Development of pH-sensitive indicator dyes for the preparation of micro-patterned optical sensor layers. Sens Actuators B Chem 150:206–210

    Article  CAS  Google Scholar 

  23. Mohr GJ, Muller H, Bussemer B, Stark A, Carofiglio T, Trupp S, Heuermann R, Henkel T, Escudero D, Gonzalez L (2008) Design of acidochromic dyes for facile preparation of pH sensor layers. Anal Bioanal Chem 392:1411–1418

    Article  CAS  PubMed  Google Scholar 

  24. Pasche S, Schyrr B, Wenger B, Scolan E, Ischer R, Voirin G (2013) Smart textiles with biosensing capabilities. Adv Sci Technol 80:129–135

    Article  CAS  Google Scholar 

  25. Jankowska DA, Bannwarth MB, Schulenburg C, Faccio G, Maniura-Weber K, Rossi RM, Scherer L, Richter M, Boesel LF (2017) Simultaneous detection of pH value and glucose concentrations for wound monitoring applications. Biosens Bioelectron 87:312–319

    Article  CAS  PubMed  Google Scholar 

  26. Panzarasa G, Osypova A, Toncelli C, Buhmann MT, Rottmar M, Ren Q, Weber KM, Rossi RM, Boesel LF (2017) The pyranine-benzalkonium ion pair: A promising fluorescent system for the ratiometric detection of wound pH. Sens Actuators B 249:156–160

    Article  CAS  Google Scholar 

  27. Kassal P, Zubak M, Scheipl G, Mohr GJ, Steinberg MD, Steinberg IM (2017) Smart bandage with wireless connectivity for optical monitoring of pH. Sens Actuators B 246:455–460

    Article  CAS  Google Scholar 

  28. Phair J, Newton L, McCormac C, Cardosi MF, Leslie R, Davis J (2011) A disposable sensor for point of care wound pH monitoring. Analyst 136:4692–4695

    Article  CAS  PubMed  Google Scholar 

  29. Schaude C, Frohlich E, Meindl C, Attard J, Binder B, Mohr GJ (2017) The development of indicator cotton swabs for the detection of pH in wounds. Sensors 17:1365–1377

    Article  PubMed Central  Google Scholar 

  30. Guinovart T, Ramirez GV, Windmiller JR, Andrade FJ, Wang J (2014) Bandage-based wearable potentiometric sensor for monitoring wound pH. Electroanalysis 26:1345–1353

    Article  CAS  Google Scholar 

  31. Pal A, Goswami D, Cuellar HE, Castro B, Kuang S, Martinez RV (2018) Early detection and monitoring of chronic wounds using low-cost, omniphobic paper-based smart bandages. Biosens Bioelectron 117:696–705

    Article  CAS  PubMed  Google Scholar 

  32. Van der Schueren L, De Clerck K (2013) Halochromic textile materials as innovative pH-sensors. ASTRJ 80:47–52

    Google Scholar 

  33. Van der Schueren L, De Clerck K (2010) The use of pH-indicator dyes for pH-sensitive textile materials. Text Res J 80:590–603

    Article  Google Scholar 

  34. Van der Schueren L, Mollet T, Ceylan Ö, De Clerck K (2010) The development of polyamide 6.6 nanofibres with a pH-sensitive function by electrospinning. Eur Polym J 46:2229–2239

    Article  Google Scholar 

  35. Agarwal A, Raheja A, Natarajan TS, Chandra TS (2012) Development of universal pH sensing electrospun nanofibers. Sensors Actuators B Chem 161:1097–1101

    Article  CAS  Google Scholar 

  36. Van der Schueren L, Hemelsoet K, Van Speybroeck V, De Clerck K (2012) The influence of a polyamide matrix on the halochromic behaviour of the pH-sensitive azo dye nitrazine yellow. Dye Pigment 94:443–451

    Article  Google Scholar 

  37. Van der Schueren L, Meyer T, Steyaert I, Ceylan Ö, Hemelsoet K, Speybroeck VV, De Clerck K (2013) Polycaprolactone and polycaprolactone/chitosan nanofibers functionalised with the pH-Sensitive dye nitrazine yellow. Carbohydr Polym 91:284–293

    Article  PubMed  Google Scholar 

  38. Sharifabad AN, Bahrami SH (2016) Halochromic chemosensor from poly(acrylonitrile)/phenolphthalein nanofibers as pH sensor. IEEE Sens J 16:873–880

    Article  CAS  Google Scholar 

  39. Kurecic M, Maver T, Virant N, Ojstrsek A, Gradisnik L, Hribernik S, Kolar M, Maver U, Kleinschek KS (2018) A multifunctional electrospun and dual nano-carrier biobased system for simultaneous detection of pH in the wound bed and controlled release of benzocaine. Cellulose 25:7277–7297

    Article  CAS  Google Scholar 

  40. Devarayan K, Kim BS (2015) Reversible and universal pH sensing cellulose nanofibers for health monitor. Sens Actuators B 209:281–286

    Article  CAS  Google Scholar 

  41. Prietto L, Pinto VZ, Halal SLME, de Morais MG, Costa JAV, Lim LT, Dias ARG, Zavareze ER (2018) Ultrafine fibers of zein and anthocyanins as natural pH indicator. J Sci Food Agr 98:2735–2741

    Article  CAS  Google Scholar 

  42. Bondre S, Patil P, Kulkarni A, Pillai MM (2012) Study on isolation and purification of anthocyanins and its application as pH indicator. IJBR 3:698–702

    CAS  Google Scholar 

  43. Kapadia GJ, Azuine MA, Sridhar R, Okuda Y, Tsuruta A, Ichiishi E, Mukainake T, Takasaki M, Konoshima T, Nishino H, Tokuda H (2003) Chemoprevention of DMBA-induced UV-B promoted, NOR-1-induced TPA promoted skin carcinogenesis, and DEN-induced phenobarbital promoted liver tumors in mice by extract of beetroot. Pharmacol Res 47:141–148

    Article  CAS  PubMed  Google Scholar 

  44. Cisowska A, Wojnicz D, Hendrich AB (2011) Anthocyanins as antimicrobial agents of natural plant origin. Nat Prod Commun 6:149–156

    CAS  PubMed  Google Scholar 

  45. Wiczkowski W, Szawara-Nowak D, Topolska J (2013) Purple cabbage anthocyanins: profile, isolation, identification, and antioxidant activity. Food Res Int 51:303–309

    Article  CAS  Google Scholar 

  46. Rokayya S, Li CJ, Zhao Y, Li Y, Sun CH (2014) Cabbage (Brassica oleracea L. Var. capitata) phytochemicals with antioxidant and anti-inflammatory potential. Asian Pac J Cancer Prev 14:6657–6662

    Article  PubMed  Google Scholar 

  47. Joshi Y, Goyal B (2011) Anthocyanins: a lead for anticancer drugs. IJRPC 1(4):1119–1126

    CAS  Google Scholar 

  48. Tu C, Zhang R, Yan C, Guo Y, Cui L (2019) A pH indicating carboxymethyl cellulose/chitosan sponge for visual monitoring of wound healing. Cellulose 26:4541–4552

    Article  CAS  Google Scholar 

  49. Pan N, Qin J, Feng P, Li Z, Song B (2019) Color-changing smart fibrous materials for naked eye real-time monitoring of wound pH. J Mater Chem B 7:2626–2633

    Article  CAS  PubMed  Google Scholar 

  50. Coomber A (2018) Wound dressing materials incorporating anthocyanins derived from fruit or vegetable sources. US 9855364, Auburn, MA (US)

  51. Caldara M, Colleoni C, Guido E, Re V, Rosace G (2016) Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3 glycidoxypropyltrimethoxysilane coating. Sensor Actuat B-Chem 222:213–220

    Article  CAS  Google Scholar 

  52. Pakolpakçıl A, Osman B, Özer ET, Şahan Y, Becerir B, Göktalay G, Karaca E (2019) Halochromic composite nanofibrous mat for wound healing monitoring. Mater Res Express 6: 1250c3

  53. Coutinho MR, Quadri MB, Moreira RFPM, Quadri MGN (2004) Partial purification of anthocyanins from brassica oleracea (red cabbage). Sep Sci Technol 39:3769–3782

    Article  CAS  Google Scholar 

  54. Maftoonazada N, Ramaswamy H (2019) Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab). Polym Testing 75:76–84

    Article  Google Scholar 

  55. Giusti MM, Rodriguez-Saona LE, Wrolstad RE (1999) Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J Agric Food Chem 47:4631–4637

    Article  CAS  PubMed  Google Scholar 

  56. Kamouna EA, Chen X, Eldin MSM, Kenawy ERS (2015) Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arabian J Chem 8:1–14

    Article  Google Scholar 

  57. Costa ESJ, Stancioli EFB, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481

    Article  Google Scholar 

  58. Zhou Y, Yang D, Nie J (2006) Electrospinning of chitosan/poly(vinylalcohol) acrylic acid aqueous solutions. J Appl Polym Sci 102:5692–5697

    Article  CAS  Google Scholar 

  59. Ramakrishna S, Fujihara K, Teo W, Lim T.C, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing, Singapore 80–81

  60. Yuan H, Zhou Q, Zhang Y (2017) Improving fiber alignment during electrospinning. In: M. Afshari (Eds) Electrospun nanofibers. 1st ed. Woodhead Publishing Series in Textiles, 125–147

  61. Baji A, Mai YW, Wong SC, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718

    Article  CAS  Google Scholar 

  62. Yang JM, Yang JH, Tsou SC, Ding CH, Hsu CC, Yang KC, Yang CC, Chen KS, Chen SW, Wang JS (2016) Cell proliferation on PVA/sodium alginate and PVA/poly (γ-glutamic acid) electrospun fiber. Mater Sci Eng C 66:170–177

    Article  CAS  Google Scholar 

  63. Cui Z, Zheng Z, Lin L, Si J, Wang Q, Peng X, Chen W (2018) Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv Polym Technol 37:1917–1928

    Article  CAS  Google Scholar 

  64. Sinha MK, Das BR, Srivastava A, Saxena AK (2013) Needleless electrospinning and coating of poly vinyl alcohol with cross-linking agent via in-situ technique. IJTFT 3:29–38

    Google Scholar 

  65. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548

    Article  CAS  Google Scholar 

  66. Thompson A, Nguyen D, Nave F (2013) Characterization of PVA-IDA hydrogel crosslinked with 1.25%, 2.5% and 5% glutaraldehyde. J Chem 1:1–7

    CAS  Google Scholar 

  67. Unnithana AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydr Polym 102:884–892

    Article  Google Scholar 

  68. Yuan Y, Lee TR (2013) Contact angle and wetting properties. In: Bracco G, Holst B (eds) Surface Science Techniques. Springer, Berlin, pp 3–34

    Chapter  Google Scholar 

  69. Pourjavaher S, Almasi H, Meshkini S, Pirsa S, Parandi E (2017) Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and purple cabbage (brassica oleraceae) extract. Carbohydr Polym 156:193–201

    Article  CAS  PubMed  Google Scholar 

  70. Cabrita L, Fossen T, Andersen QM (2000) Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chem 68:101–107

    Article  CAS  Google Scholar 

  71. Tang B, He Y, Liu J, Zhang J, Li J, Zhou J, Ye Y, Wang J, Wang X (2019) Kinetic investigation into pH-dependent color of anthocyanin and its sensing performance. Dyes Pigm 170:107643

    Article  CAS  Google Scholar 

  72. Clifford MN (2000) Anthocyanins – nature, occurrence and dietary burden. J Sci Food Agric 80:1063–1072

    Article  CAS  Google Scholar 

  73. Dargaville TR, Farrugia BL, Broadbent JA, Pace S, Upton Z, Voelcker NH (2013) Sensors and imaging for wound healing: a review. Biosens Bioelectron 41:30–42

    Article  CAS  PubMed  Google Scholar 

  74. Shukla VK, Shukla D, Tiwary SK, Agrawal S, Rastogi A (2007) Evaluation of pH measurement as a method of wound assessment. J Wound Care 16:291–294

    Article  CAS  PubMed  Google Scholar 

  75. Nizamutdinova IT, Kim YM, Chung JI, Shin SC, Jeong YK, Seo HG, Lee JH, Chang KC, Kim HJ (2009) Anthocyanins from black soybean seed coats stimulate wound healing in fibroblasts and keratinocytes and prevent inflammation in endothelial cells. Food Chem Toxicol 47:2806–2812

    Article  CAS  PubMed  Google Scholar 

  76. Wiczkowski W, Szawara-Nowak D, Topolska J (2015) Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing. Food Chem 167:115–123

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK) and was assigned project number 116M540.

Author information

Authors and Affiliations

Authors

Contributions

Ayben Pakolpakçıl; Investigation, Formal analysis, Methodology, Bilgen Osman; Conceptualization, Methodology, Writing—original draft, Gökhan Göktalay; Investigation, Formal analysis, Methodology, Writing—original draft, Elif Tümay Özer; Investigation, Formal analysis, Methodology, Visualization, Yasemin Şahan; Formal analysis, Methodology, Behçet Becerir; Formal analysis, Methodology, Esra Karaca; Conceptualization, Resources, Funding acquisition, Project administration, Writing—original draft, Writing—review & editing.

Corresponding author

Correspondence to Esra Karaca.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MPEG 10510 KB)

Supplementary file2 (MPEG 4632 KB)

Supplementary file3 (MPEG 56850 KB)

Supplementary file4 (MPEG 27392 KB)

Supplementary file5 (DOC 105 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakolpakçıl, A., Osman, B., Göktalay, G. et al. Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins. J Polym Res 28, 50 (2021). https://doi.org/10.1007/s10965-020-02400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02400-1

Keywords

Navigation