Skip to main content
Log in

Preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using low-cost abundantly available sorbent

Sorption behaviour of uranium(VI) and thorium(IV) on low-cost abundantly available sorbent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Olive cake as low-cost abundantly available sorbent has been characterized by N2 at 77 K adsorption, porosity analysis, elemental analysis and IR spectra and has been used for preconcentrating of uranium(VI) and thorium(IV) ions prior to their determination spectrophotometrically. The optimum pH values for quantitative sorption of U(VI) and Th(IV) are 4–7 and 3–7, respectively. The enrichment factor for the preconcentration of U(VI) and Th(IV) were found to be 125 and 75 in the given order. The sorption capacity of olive cake is in the range of 2,260–15,000 μg g−1 for Th(IV) and in the range of 1,090–17,000 μg g−1 for U(VI) at pH 3–7. The sorbent exhibits good reusability and the uptake and stripping of the studied ions were fairly rapid. The elution of U(VI) and Th(IV) was performed with 0.3–1 M HCl/1–2 M HNO3 and 0.3–0.8 M HCl/1 M HNO3, respectively. The precision of the method was 1.8 RSD% for U(VI) and 2.5 RSD% for Th(IV) in a concentration of 1.00 μg mL−1 for 10 replicate analysis. The influence of some electrolytes and cations as interferents was discussed. Separation of U(VI) and Th(IV) from other metal ions in synthetic solution was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agrawal YK, Vora SB (2003) Microchim Acta 142:255

    Article  CAS  Google Scholar 

  2. Kadous A, Didi M, Villemin D (2009) J Radioanal Nucl Chem 280:157

    Article  CAS  Google Scholar 

  3. Saad EM, Mansour RA, El-Asmy A, El-Shahawi MS (2008) Talanta 76:1041

    Article  CAS  Google Scholar 

  4. Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D (2003) J Hazard Mater B97:71

    Article  Google Scholar 

  5. Seko N, Katakai A, Tamada M, Yoshii F (2004) Sep Sci Technol 39:3753

    Article  CAS  Google Scholar 

  6. Schierz A, Zanker H (2009) Environ Pollut 157:1088

    Article  CAS  Google Scholar 

  7. Merdivan M, Seyhan S, Gok C (2006) Microchim Acta 154:109

    Article  CAS  Google Scholar 

  8. Sadeghi S, Sheikhzadeh E (2009) J Hazard Mater 163:861

    Article  CAS  Google Scholar 

  9. Krishina PG, Gladis JM, Rao KS, Rao TP, Naidu GRK (2005) J Radioanal Nucl Chem 266:251

    Article  Google Scholar 

  10. Metilda P, Gladis JM, Rao TP (2003) Radiochim Acta 91:737

    Article  CAS  Google Scholar 

  11. El-Sayed AA, Hamed MM, Hmmad HA, El-Reefy S (2007) Radiochim Acta 95:43

    Article  CAS  Google Scholar 

  12. Starvin AM, Rao TP (2004) Talanta 63:225

    Article  CAS  Google Scholar 

  13. Pancras JP, Puri BK (1999) Microchim Acta 130:203

    Article  CAS  Google Scholar 

  14. Shamsipur M, Ghiasvand AR, Yamini Y (1999) Anal Chem 71:4892

    Article  CAS  Google Scholar 

  15. Shawky S, Geleel MA, Aly A (2005) J Radioanal Nucl Chem 265:81

    Article  CAS  Google Scholar 

  16. Awwad NS, Daifullah AAM (2005) J Radioanal Nucl Chem 264:623

    Article  CAS  Google Scholar 

  17. Seyhan S, Merdivan M, Demirel N, Hosgoren H (2008) Microchim Acta 161:87

    Article  CAS  Google Scholar 

  18. Rajul CSK, Subramanian MS, Srinivasan TG, Rao PRV (2006) Radiochim Acta 94:351

    Article  Google Scholar 

  19. El-Menshawy AM, Khalifa ME (2006) J Radioanal Nucl Chem 268:341

    Article  CAS  Google Scholar 

  20. El-Dessouky SI, Borai EH (2006) J Radioanal Nucl Chem 268:247

    Article  CAS  Google Scholar 

  21. Rashed MN (2006) Environ Monit Assess 119:31

    Article  CAS  Google Scholar 

  22. Ayyappan R, Sophia AC, Swaminathan K, Sandhya S (2005) Process Biochem 40:1293

    Article  CAS  Google Scholar 

  23. Argun ME, Dursun S, Karatas M (2008) Bioresour Technol 99:8691

    Article  CAS  Google Scholar 

  24. Galiatsatou P, Metaxas M, Kasselouri-Rigopoulou V (2002) J Hazard Mater B91:187

    Article  Google Scholar 

  25. Bacaoui A, Yaacoubi A, Dahbi A, Bennouna C, Lou RPT, Maldonado-Hodar FJ, Rivera-Utrilla J, Moreno-Castilla C (2001) Carbon 39:425

    Article  CAS  Google Scholar 

  26. Al-Anber ZA, Matouq MAD (2008) J Hazard Mater 151:194

    Article  CAS  Google Scholar 

  27. Konstantinou M, Kolokassidou K, Pashalidis I (2007) Adsorption 13:33

    Article  CAS  Google Scholar 

  28. Lippens BC, Linsen BG, de Boer JH (1964) J Catal 3:32

    Article  CAS  Google Scholar 

  29. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  30. Atia A (2005) Hydrometallurgy 80:13

    Article  CAS  Google Scholar 

  31. Chisholm-Brause CJ, Berg JM, Matzner RA, Morris DE (2001) J Colloid Interf Sci 233:38

    Article  CAS  Google Scholar 

  32. Li WJ, Tao ZY (2002) J Radioanal Nucl Chem 254:187

    Article  CAS  Google Scholar 

  33. Ekberg C, Albinson Y, Comarmond MJ, Brown PL (2000) J Solut Chem 29:63

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Prof. Dr. Dieter Hönicke, Chemnitz Technical University/Germany for his help. The scholarship support for Prof. Dr. Kadir Yurdakoc by DAAD/Germany is gratefully appreciated. The authors are also grateful to Research Foundation of Dokuz Eylul University (Project 04-KB-FEN-102) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melek Merdivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bursali, E.A., Merdivan, M. & Yurdakoc, M. Preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using low-cost abundantly available sorbent. J Radioanal Nucl Chem 283, 471–476 (2010). https://doi.org/10.1007/s10967-009-0365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-009-0365-3

Keywords

Navigation