Skip to main content
Log in

Batch and continuous fixed-bed column biosorption of thorium(IV) from aqueous solutions: equilibrium and dynamic modeling

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Biosorption of thorium(IV) from aqueous solution by Cystoseira indica alga was investigated in batch and fixed-bed column experiments. In the batch study the effects of pH and initial concentration were investigated. The optimum pH for Th(IV) biosorption was found to be 3.5. The experimental isotherms obtained at different pH conditions were analyzed using three two-parameter models and three three-parameter models. Among the two-parameter models the Langmuir model and among the three-parameter models the Redlich–Peterson model vividly described the equilibrium data. The results showed that C. indica alga is a homogeneous biosorbent and Th(IV) biosorption is a favorable and physical process. The maximum biosorption capacity from the Langmuir model was 151.3, 195.7 and 120.6 mg/g at pH 2.5, 3.5 and 4.5, respectively. The continuous isotherm obtained from the column data was modeled by the Langmuir model and the maximum biosorption capacity was 283.8 mg/g. The experimental data were fitted by the use of an analytical and a numerical model, namely Clark and mass transfer models. The results showed that the mass transfer model adequately described the experimental data. Sensitivity analysis revealed that the value of k in has more effect than the axial dispersion coefficient (D z) on the shape of breakthrough curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jain VK, Pandya RA, Pillai SG, Shrivastav PS (2006) Talanta 70:257–266

    Article  CAS  Google Scholar 

  2. Rao TP, Metilda P, Gladis JM (2006) Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  3. Salinas-Pedroza MG, Olguin MT (2004) J Radioanal Nucl Chem 260(1):115–118

    Article  CAS  Google Scholar 

  4. Anirudhan TS, Rijith S, Tharun AR (2010) Colloids Surf A 368:13–22

    Article  CAS  Google Scholar 

  5. Bozkurt SS, Molu ZB, Cavas L, Merdivan M (2011) J Radioanal Nucl Chem 288:867–874

    Article  CAS  Google Scholar 

  6. Zou WH, Zhao L, Zho L (2012) J Radioanal Nucl Chem 292:1303–1315

    Article  CAS  Google Scholar 

  7. Fu F, Wang Q (2011) J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  8. Wang JL, Chen C (2009) Biotechnol Adv 27:195–226

    Article  Google Scholar 

  9. Colak F, Atar N, Yazicioglu D, Olgun A (2011) Chem Eng J 173:422–428

    Article  CAS  Google Scholar 

  10. Farooq U, Kozinski JA, Khan MA, Athar M (2010) Bioresour Technol 101:5043–5053

    Article  CAS  Google Scholar 

  11. Faghihiyan H, Peyvandi S (2012) J Radioanal Nucl Chem 293:463–468

    Google Scholar 

  12. Vijayaraghavan K, Yun Y-S (2008) Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  13. Demirbas A (2008) J Hazard Mater 157:220–229

    Article  CAS  Google Scholar 

  14. Erkaya IK, Arica MY, Akbulut A, Bayramoglu (2011) J Radioanal Nucl Chem 299:1993–2003

    Article  Google Scholar 

  15. Oguz E, Ersoy M (2010) Chem Eng J 164:56–62

    Article  CAS  Google Scholar 

  16. Vimala R, Charumathi D, Das N (2011) Desalination 275:291–296

    Article  CAS  Google Scholar 

  17. Das N (2010) Hydrometallurgy 103:180–189

    Article  CAS  Google Scholar 

  18. Foo KY, Hameed BH (2010) Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  19. Sing A, Kumar D, Gaur JP (2012) Water Res 46:779–788

    Article  Google Scholar 

  20. Ghasemi M, Keshtkar AR, Dabbagh R, Safdari SJ (2011) J Hazard Mater 189:141–149

    Article  CAS  Google Scholar 

  21. Keshtkar AR, Kafshgari F, Mousavian MA (2012) J Radioanal Nucl Chem 292:501–512

    Article  CAS  Google Scholar 

  22. Montazer-Rahmati MM, Rabbani P, Abdolali A, Keshtkar AR (2011) J Hazard Mater 185:401–407

    Article  CAS  Google Scholar 

  23. Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z (2010) J Hazard Mater 175:304–310

    Article  CAS  Google Scholar 

  24. Kafshgari F, Keshtkar AR, Mousavian MA (2013) Iran J Environ Health Sci Eng 10:14

    Article  Google Scholar 

  25. Ramezani Moghaddama M, Fatemi S, Keshtkar AR (2013) Chem Eng J 23:294–303

    Article  Google Scholar 

  26. Keshtkar AR, Hassani MA (2014) Korean J Chem Eng 31(2):289–295

    Article  CAS  Google Scholar 

  27. Davis TA, Volesky B, Mucci A (2003) Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  28. Diniz V, Volesky B (2005) Water Res 39:239–247

    Article  CAS  Google Scholar 

  29. Costa JFdeSaS, Vilar VJP, Botelho CMS, da Silva EAB, Boaventura RAR (2010) Water Res 44:3946–3958

    Article  CAS  Google Scholar 

  30. Bhainsa KC, D’Souza SF (2009) J Hazard Mater 165:670–676

    Article  CAS  Google Scholar 

  31. Anirudhan TS, Sreekumari SS, Jalajamony S (2013) J Environ Radioact 116:141–147

    Article  CAS  Google Scholar 

  32. Yan SK, Tan N, Yan XM, Chen F, Long W, Lin YC (2013) Mar Pollut Bull 74:213–219

    Article  Google Scholar 

  33. Al-Asheh S, Banat F (2001) Environ Geol 40(6):693–698

    Article  CAS  Google Scholar 

  34. Lopez-Mesas M, Navarretea ER, Carrillo F, Palet C (2011) Chem Eng J 174:9–17

    Article  CAS  Google Scholar 

  35. Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswatib N, Ismadji S (2009) J Hazard Mater 162:616–645

    Article  CAS  Google Scholar 

  36. Tsezos M, Volesky B (1981) Biotechnol Bioeng 23:583–604

    Article  CAS  Google Scholar 

  37. Gadd GM, White C (1989) Environ Pollut 61:187–197

    Article  CAS  Google Scholar 

  38. Hanif MA, Nadeem R, Bhatti HN, Ahmad NR, Ansari TM (2007) J Hazard Mater B 139:345–355

    Article  CAS  Google Scholar 

  39. Chibana M, Soudani A, Sinan F, Persin M, Single (2011) Colloid Surf B 82:267–276

    Article  Google Scholar 

  40. Ibrahima HS, Jamil TS, Hegazy EZ (2010) J Hazard Mater 182:842–884

    Article  Google Scholar 

  41. Repo E, Petrus R, Sillanpaa M, Warchoł JK (2011) Chem Eng J 172:376–385

    Article  CAS  Google Scholar 

  42. Dursun AY (2006) Biochem Eng J 28:187–195

    Article  CAS  Google Scholar 

  43. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) J Hazard Mater B 133:304–308

    Article  CAS  Google Scholar 

  44. Hamdaoui O, Naffrechoux E (2007) J Hazard Mater 147:401–411

    Article  CAS  Google Scholar 

  45. Oubagaranadin JUK, Murthy ZVP (2010) Appl Clay Sci 50:409–413

    Article  CAS  Google Scholar 

  46. Karimi M, Shojaei A, Nematollahzadeh A, Abdekhodaie MJ (2012) Chem Eng J 210:280–288

    Article  CAS  Google Scholar 

  47. Kleinubing SJ, da Silva EA, da Silva MGC, Guibal E (2011) Bioresour Technol 102:4610–4617

    Article  CAS  Google Scholar 

  48. Saha PD, Chakraborty S, Chowdhury S (2012) Colloids Surf B 92:262–270

    Article  Google Scholar 

  49. Izquierdo M, Gabaldon C, Marzal P, Alvarez-Hornos FJ (2010) Bioresour Technol 101:510–517

    Article  CAS  Google Scholar 

  50. da Silva EA, Cossich ES, Tavares CRG, Filho LC, Guirardello R (2002) Process Biochem 38:791–799

    Article  Google Scholar 

  51. Barrosa MASD, Silva EA, Arroyo PA, Tavares CRG, Schneider RM, Suszekb M, Sousa-Aguiar EF (2004) Chem Eng Sci 59:5959–5966

    Article  Google Scholar 

  52. Ozdural AR, Alkan A, Kerkhof PJAM (2004) J Chromatogr A 1041:77–85

    Article  CAS  Google Scholar 

  53. Acheampong MA, Pakshirajan K, Annachhatre AP, Lens PNL (2013) Ind Eng Chem 19:841–848

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Keshtkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riazi, M., Keshtkar, A.R. & Moosavian, M.A. Batch and continuous fixed-bed column biosorption of thorium(IV) from aqueous solutions: equilibrium and dynamic modeling. J Radioanal Nucl Chem 301, 493–503 (2014). https://doi.org/10.1007/s10967-014-3129-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3129-7

Keywords

Navigation