Skip to main content
Log in

A Computational Fluid Dynamics code for aerosol and decay-product studies in indoor environments

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present work, Computational Fluid Dynamics (CFD) code has been used to simulate the behaviour of aerosols and decay products of 222Rn/220Rn in indoor environments. The code has been incorporated with simulation modules describing relevant physical processes governing the aerosol and decay product dynamics such as particle deposition, gravitational settling, thermophoresis, coagulation and size dependent attachment of decay products to aerosol. Subsequently, reliability and consistency of the CFD code has been evaluated and validated by comparing simulated results with analytical and simulation results of well-known cases reported in literature. Comparison showed a good agreement within ± 3.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. UNSCEAR (2000) Sources and Effects of Ionizing Radiation: UNSCEAR 2000 Report to `the General Assembly with Scientific Annexes, UNSCEAR 2000 REPORT. United Nations, New York, New York. https://doi.org/10.1097/00004032-199907000-00007

    Book  Google Scholar 

  2. World Health Organization (2009) WHO handbook on indoor radon: a public health perspective., World Health Organization. World Health Organization. https://doi.org/10.1080/00207230903556771

  3. Kanse SD, Sahoo BK, Gaware JJ, Prajith R, Sapra BK (2016) A study of thoron exhalation from monazite-rich beach sands of High Background Radiation Areas of Kerala and Odisha, India. Environ Earth Sci. https://doi.org/10.1007/s12665-016-6279-9

    Article  Google Scholar 

  4. Sahoo BK, Sudeep Kumara K, Karunakara N, Gaware JJ, Sapra BK, Mayya YS (2017) Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 1): development of theoretical models for design considerations. J Environ Radio 172:237–248. https://doi.org/10.1016/j.jenvrad.2017.03.015

    Article  CAS  Google Scholar 

  5. IAEA (2011) Safety Reports Series No. 68. Radiation Protection and NORM Residue management in the Production of Rare Earths from Thorium Containing Minerals. Vienna, p 280

  6. Jacobi W (1972) Activity and potential α-energy of 222radon and 220radon-daughters in different air atmospheres. Health Phys 22:441–450. https://doi.org/10.1097/00004032-197205000-00002

    Article  CAS  PubMed  Google Scholar 

  7. Zhao B, Jun Wu (2009) Modeling particle deposition from fully developed turbulent flow in ventilation duct. Atmos Environ 40:457–466. https://doi.org/10.1016/j.atmosenv.2005.09.043

    Article  CAS  Google Scholar 

  8. Stevanovic N, Markovic V, Urosevic V, Nikezic D (2009) Determination of parameters of the Jacobi room model using the Brownian motion model. Health Phys 96(1):48–54. https://doi.org/10.1097/01.HP.0000326328.47540.6d

    Article  CAS  PubMed  Google Scholar 

  9. Stevanovic N, Markovic V, Urosevic V, Nikezic D (2009) Deposition rates of unattached and attached radon progeny in room with turbulent airflow and ventilation. J Environ Radioact 100:585–589. https://doi.org/10.1016/j.jenvrad.2009.04.007

    Article  CAS  PubMed  Google Scholar 

  10. Porstendörfer J (1994) Properties and behaviour of radon and thoron and their decay products in the air. J Aerosol Sci 25:219–263. https://doi.org/10.1016/0021-8502(94)90077-9

    Article  Google Scholar 

  11. Porstendörfer J (1984) Behaviour of radon daughter products in indoor air. Radiat Prot Dosim 7:107–113. https://doi.org/10.1093/oxfordjournals.rpd.a082973

    Article  Google Scholar 

  12. Meisenberg O, Tschiersch J (2010) Thoron in indoor air: modeling for a better exposure estimate. Indoor Air 21:240–252. https://doi.org/10.1111/j.1600-0668.2010.00697.x

    Article  CAS  PubMed  Google Scholar 

  13. Semwal P, Agarwal TK, Singh K, Joshi M, Gusian GS, Sahoo BK, Ramola RC (2019) Indoor inhalation dose assessment for thoron-rich regions of Indian Himalayan belt. Environ Sci Pollut Res 26:4855–4866. https://doi.org/10.1007/s11356-018-3891-0

    Article  CAS  Google Scholar 

  14. Prasad M, Rawat M, Dangwal A, Prasad G, Mishra M, Ramola RC (2016) Study of radiation exposure due to radon, thoron and progeny in the indoor environment of Yamuna and tons valleys of Garhwal Himalaya. Radiat Prot Dosim 171:187–191. https://doi.org/10.1093/rpd/ncw055

    Article  CAS  Google Scholar 

  15. Ramola RC, Prasad M, Kandari T, Pant P, Bossew P, Mishra R, Tokonami S (2016) Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Sci Rep. https://doi.org/10.1038/srep31061

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim C, Zhou K (2016) Analysis of automotive disc brake squeal considering damping and design modifications for pads and a disc. Int J Autom Technol 17:213–223. https://doi.org/10.1007/s12239-016-0021-1

    Article  Google Scholar 

  17. Ferrari S, Ambrogio S, Walker A, Verma P, Narracott AJ, Wilkinson I, Fenner JW (2017) The ring vortex: concepts for a novel complex flow phantom for medical imaging. Open J Med Imaging 7:28–41. https://doi.org/10.4236/ojmi.2017.71004

    Article  Google Scholar 

  18. Augusto LLX, Lopes GC, Gonçalves JAS (2016) A CFD study of deposition of pharmaceutical aerosols under different respiratory conditions. Braz J Chem Eng 33:549–558. https://doi.org/10.1590/0104-6632.20160333s20150100

    Article  Google Scholar 

  19. Tong Z, Zhong W, Yu A, Chan HK, Yang R (2016) CFD–DEM investigation of the effect of agglomerate–agglomerate collision on dry powder aerosolisation. J Aeronaut Sci 92:109–121. https://doi.org/10.1016/j.jaerosci.2015.11.005

    Article  CAS  Google Scholar 

  20. Akbari K, Mahmoudi J, Ghanbari M (2012) Influence of indoor air conditions on radon concentration in a detached house. Environ Radio 116:166–173. https://doi.org/10.1016/j.jenvrad.2012.08.013

    Article  CAS  Google Scholar 

  21. ZhuoW IT, Moriizumi J, Aoyagi T, Takahashi I (2001) Simulation of the concentrations and distributions of indoor radon and thoron. Radiat Prot Dosim 93:357–367. https://doi.org/10.1093/oxfordjournals.rpd.a006448

    Article  Google Scholar 

  22. Agarwal TK, Sahoo BK, GawareJJ JM, Sapra BK (2014) CFD based simulation of thoron (220Rn) concentration in a delay chamber for mitigation application. J Environ Radio 136:16–21. https://doi.org/10.1016/j.jenvrad.2014.05.003

    Article  CAS  Google Scholar 

  23. Agarwal TK, Joshi M, Sahoo BK, Kanse SD, Sapra BK (2015) Effect of 220Rn gas concentration distribution on its transmission from a delay chamber: evolving a CFD-based uniformity index. Radiat Prot Dosim 168:546–552. https://doi.org/10.1093/rpd/ncv361

    Article  CAS  Google Scholar 

  24. Agarwal TK, Sahoo BK, Joshi M, Mishra R, Meisenberg O, Tschiersch J, Sapra BK (2019) CFD simulations to study the effect of ventilation rate on 220Rn concentration distribution in a test house. Rad Phys Chem 162:82–89. https://doi.org/10.1016/j.radphyschem.2019.04.018

    Article  CAS  Google Scholar 

  25. Agarwal TK, Sahoo BK, Shetty T, GawareJJ KS, Karunakara N, Sapra BK, Datta D (2020) Numerical simulation of 222Rn profiling in an experimental chamber using CFD technique. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2020.106298

    Article  PubMed  Google Scholar 

  26. Heintzenberg J (1994) Properties of the log-normal particle size distribution. Aerosol Sci Technol 21:46–48. https://doi.org/10.1080/02786829408959695

    Article  Google Scholar 

  27. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley

    Google Scholar 

  28. Porstendörfer J, Mercer TT (1979) Influence of electric charge and humidity upon the diffusion coefficient of radon decay products. Health Phys 37(2):191–199. https://doi.org/10.1097/00004032-197908000-00001

    Article  PubMed  Google Scholar 

  29. Lai ACK, Nazaroff WW (2000) Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J Aero Sci 31:463–476. https://doi.org/10.1016/S0021-8502(99)00536-4

    Article  CAS  Google Scholar 

  30. Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel low at low Reynolds number. J Fluid Mech 177:133–166. https://doi.org/10.1017/S0022112087000892

    Article  CAS  Google Scholar 

  31. Talbot L, Cheng RK, Schefer RW, Willis DR (1980) Thermophoresis of Particles in a Heated Boundary Layer. J Fluid Mech 101:737–758. https://doi.org/10.1017/S0022112080001905

    Article  Google Scholar 

  32. Prakash A, Bapat AP, Zachariah MR (2003) A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems. Aerosp Sci Technol 37(11):892–898. https://doi.org/10.1080/02786820300933

    Article  CAS  Google Scholar 

  33. Rajagopal PS, Joshi M, Shinde J, Anand S, Runchal AK, Sapra BK, Mayya YS, Rao MM (2018) Numerical modeling of aerosol transport and dynamics. In: Runchal A, Gupta A, Kushari A, De A, Aggarwal S (eds) Energy for propulsion. Green energy and technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7473-8_14

    Chapter  Google Scholar 

  34. Pich J (1972) Theory of gravitational deposition of particles from laminar flows in channels. J Aeronaut Sci 3:351–361. https://doi.org/10.1016/0021-8502(72)90090-0

    Article  Google Scholar 

  35. Parker S, Nally J, Foat T, Preston S (2010) Refinement and testing of the drift-flux model for indoor aerosol dispersion and deposition modelling. J Aeronaut Sci 21:921–934. https://doi.org/10.1016/j.jaerosci.2010.07.002

    Article  CAS  Google Scholar 

  36. Bouilly J, Limam K, Beghein C, Allard F (2005) Effect of ventilation strategies on particle decay rates indoors: an experimental and modelling study. Atmos Environ 39:4885–4892. https://doi.org/10.1016/j.atmosenv.2005.04.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to Dr. Anil Kumar and Dr. Arun Murthy from Fluidyn Gunsoft, Banaglore for their support and knowledge.

Funding

No Grant has been provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, methodology, data generation and analysis. The first draft of the manuscript was written by TKA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to B. K. Sapra.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, T.K., Sahoo, B.K., Kumar, M. et al. A Computational Fluid Dynamics code for aerosol and decay-product studies in indoor environments. J Radioanal Nucl Chem 330, 1347–1355 (2021). https://doi.org/10.1007/s10967-021-07877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07877-8

Keywords

Navigation