Skip to main content
Log in

Measurement of neutron flux parameters for implementation of k0-INAA at Kyoto University Research Reactor

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Neutron flux parameters at pneumatic irradiation tube Pn-1 of Kyoto University Research Reactor (KUR) were measured in order to establish k0-INAA method. The measured thermal to epithermal neutron fluxes ratio (f), shape factor of epithermal neutron flux (α), and thermal (ϕth) and fast (ϕf) neutron fluxes were 29.7 ± 2.0, − 0.015 ± 0.003, and (3.17 ± 0.11) × 1012 and (4.79 ± 0.16) × 1011 cm−2 s−1 at 1 MW, respectively. The neutron flux spectrum showed a remarkable stability over the weekly operation cycle as well as at different reactor powers. The analysis results of reference materials [multi-element liquid standard, and Oriental Basma Tobacco Leaves (INCT-OBTL-5)] revealed that the k0-INAA procedure established at the KUR can be regarded as a reliable standardization method of multi-elemental INAA; measured concentrations have zeta-score <  ± 2. Corrections due to nuclear interference resulting from fast neutron reactions must be considered for samples with relatively high concentrations of interfering elements. MCNP5 code was used to estimate the total efficiencies of gamma-rays, which might be required to calculate correction factor for the true coincidence effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sekimoto S, Homura Y, Ho VD, Inagaki M, Shirai N, Ohtsuki T (2019) Neutron activation analysis of carbonate reference materials: coral(JCp-1) and giant clam (JCt-1). J Radioanal Nucl Chem 322:1579–1583

    Article  CAS  Google Scholar 

  2. Shirai N, Hidaka Y, Yamaguchi A, Sekimoto S, Ebihara M, Kojima H (2015) Neutron activation analysis of iron meteorites. J Radioanal Nucl Chem 303:1375–1380

    Article  CAS  Google Scholar 

  3. Shirai N, Toktaganov M, Takahashi H, Yokozuka Y, Sekimoto S, Ebihara M (2015) Multielemental analysis of Korean geological reference samples by INAA, ICP-AES and ICP-MS. J Radioanal Nucl Chem 303:1367–1374

    Article  CAS  Google Scholar 

  4. Sekimoto S, Kobayashi T, Takamiya K, Ebihara M, Shibata S (2008) Chemical composition of magnetic spherules collected from deep sea sediment. J Radioanal Nucl Chem 278:319–322

    Article  CAS  Google Scholar 

  5. https://www-s.nist.gov/srmors/view_detail.cfm?srm=2783, accessed on 11 May 2020.

  6. Yatkin S, Trzepla K, White WH, Hyslop NP (2018) Generation of multi-element reference materials on PTFE filters mimicking ambient aerosol characteristics. Atmos Environ 189:41–49

    Article  CAS  Google Scholar 

  7. Benson RA, Mohamed NMA, Soliman M, Hassan M, Abou Mandour MA (2017) Application of k0-INAA for evaluating the essential and toxic elements of some medicinal plants in West Pokot County, Kenya. J Radioanal Nucl Chem 314:23–29

    Article  CAS  Google Scholar 

  8. Soliman MA, Abdou FS, Mohamed NM (2020) Novel neutron activation analysis scheme for determination of trace elements in medicinal plants infusion. J Radioanal Nucl Chem 325:841–846

    Article  CAS  Google Scholar 

  9. Attallah MF, Metwally SS, Moussa SI, Soliman MA (2019) Environmental impact assessment of phosphate fertilizers and phosphogypsum waste: elemental and radiological effects. Microchem J 146:789–797

    Article  CAS  Google Scholar 

  10. Mejjad N, Laissaoui A, El-Hammoumi O et al (2016) Sediment geochronology and geochemical behavior of major and rare earth elements in the Oualidia Lagoon in the western Morocco. J Radioanal Nucl Chem 309:1133–1143

    Article  CAS  Google Scholar 

  11. Pino F, Sajo-Castelli AM, Barros H et al (2013) k0-INAA of Venezuelan ceramics and complete statistical analysis to establish their provenance. J Radioanal Nucl Chem 298:1257–1272

    Article  CAS  Google Scholar 

  12. Blaauw M. The k0-IAEA program manual for version 5.00. International Atomic Energy Agency, Vienna, Austria. http://www-naweb.iaea.org/napc/iachem/files/k0IAEAhelp.pdf, accessed on 20 May 2020.

  13. Soliman M, Mohamed NMA, Gahen M, Saad EA, Yousef SK, Sohsah MA (2011) Implementation of k0-standardization method of the INAA at ETRR-2 research reactor. J Radioanal Nucl Chem 287:629–634

    Article  CAS  Google Scholar 

  14. Soliman MA, Mohamed NMA, Takamiya K, Sekimoto S, Inagaki M, Oki Y, Ohtsuki T (2020) Estimation of 47Sc and 177Lu production rates from their natural targets in Kyoto University Research Reactor. J Radioanal Nucl Chem 324:1099–1107

    Article  CAS  Google Scholar 

  15. De Corte F, Simonits A (2003) Recommended nuclear data for use in the k0- standardization of neutron activation analysis. Atomic Data Nucl Data Tables 85:47–67

    Article  Google Scholar 

  16. Erdtmann G (1976) Neutron Activation Tables, Germany

  17. The k0-International Scientific Committee. http://www.kayzero.com/k0naa/k0naaorg/Nuclear_Data_SC/Entries/2019/4/15_Update_of_k0-database_Ba-131.html. Accessed on 3 May 2020.

  18. Kučera J, Kubešová M, Lebeda O (2018) Improvement of the Ca determination accuracy with k0-INAA using an HPGe coaxial detector with extended energy range efficiency calibration. J Radioanal Nucl Chem 315:671–675

    Article  Google Scholar 

  19. Mohamed NMA (2017) Accurate corrections of HPGe detector efficiency for NAA samples. J Radiat Nuclear Appl 2:37–43

    Article  Google Scholar 

  20. Gilmore G (2008) Practical gamma-ray spectrometry. Chapters 7–16. Wiley, Chichester

    Book  Google Scholar 

  21. De Corte F (1987) The k0-standardization method; A move to the optimization of neutron activation analysis. Faculteit van de Wetenschappen, Instituutvoor Nucleaire Wetenschappen.

  22. Alnour I, Wagiran H, Ibrahim N, Hamzah S, Siong W, Elias M (2016) New approach to calculate the true coincidence effect of HpGe detector. AIP Conf Proc 1704:030005. https://doi.org/10.1063/1.4940074

    Article  Google Scholar 

  23. Kafala S (1994) Simple method for true coincidence summing correction. J Radioanal Nucl Chem 191:105–114

    Article  Google Scholar 

  24. Soliman MA, Mohamed NMA, Osman AM, Abdel-Monem AM (2014) Performance of flowing sample neutron activation analysis technique for determination of multi-elemental content. J Radioanal Nucl Chem 299:89–93

    Article  CAS  Google Scholar 

  25. Analytical Methods Committee Technical Briefs (2016) z-Scores and other scores in chemical proficiency testing—their meanings, and some common misconceptions. Anal Methods 8: 5553–5555.

  26. Manh-Dung H, Quang-Thien T, Van-Doanh H, Dong-Vu C, Thi-Sy N (2016) Quality evaluation of the k0-standardized neutron activation analysis at the Dalat research reactor. J Radioanal Nucl Chem 309:135–143

    Article  Google Scholar 

  27. De Corte F, Simonits A et al (1993) Recent advances in the ko-standardizationof neutron activation analysis: extensions, applications, prospects. J Radioanal Nucl Chem 169:125–158

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Japan Society for the Promotion of Science (JSPS); the first author (M. Soliman) is JSPS Postdoctoral Fellow (ID P17384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Soliman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, M., Abdou, F.S., Ho, VD. et al. Measurement of neutron flux parameters for implementation of k0-INAA at Kyoto University Research Reactor. J Radioanal Nucl Chem 331, 3949–3956 (2022). https://doi.org/10.1007/s10967-022-08391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08391-1

Keywords

Navigation