Skip to main content
Log in

Low-cost reed straw-derived biochar prepared by hydrothermal carbonization for the removal of uranium(VI) from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Uranium is the important nuclear fuel and its effective adsorption using low-cost materials is meaningful to environmental protection and sustainable development of nuclear energy. In this study, green and economical reed straw-derived biochar (RBC) was prepared by hydrothermal carbonization method using low-cost reed straw as feedstocks and citric acid as catalysts for uranium(VI) removal. RBC possessed larger pores and more oxygen-containing functional groups, providing more abundant adsorption sites for uranyl ions. RBC adsorbed uranium pH-dependently, spontaneously and endothermically, and pseudo-second-order kinetics and the Langmuir model could adequately describe the adsorption process. This work highlighted a feasible synthesis strategy of biochar for radioactive contaminants removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ye Q (2016) Safety and effective developing nuclear power to realize green and low-carbon development. Adv Clim Chang Res 7:10–16

    Article  Google Scholar 

  2. Yan X, Luo X (2015) Radionuclides distribution, properties, and microbial diversity of soils in uranium mill tailings from southeastern China. J Environ Radioact 139:85–90

    Article  CAS  Google Scholar 

  3. Papageorgiou F, McDermott F, Van Acken D (2022) Uranium in groundwaters: Insights from the Leinster granite, SE Ireland. Appl Geochem 139:105236

    Article  CAS  Google Scholar 

  4. Gao Y, Yuan Y, Ma D, Li L, Li Y, Xu W, Tao W (2014) Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J Nucl Mater 453:82–90

    Article  CAS  Google Scholar 

  5. Yi Z, Yao J, Kuang Y, Chen H, Xu J (2016) Uptake of hexavalent uranium from aqueous solutions using coconut husk activated carbon. Desalin Water Treat 57:1749–1755

    Article  CAS  Google Scholar 

  6. Zhao C, Liu J, Deng Y, Tian Y, Sun Q (2019) Uranium(VI) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach. J Clean Prod 236:117624

    Article  CAS  Google Scholar 

  7. Dai Z, Zhen Y, Sun Y, Li L, Ding D (2021) ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem Eng J 415:129002

    Article  CAS  Google Scholar 

  8. Ahmad Z, Li Y, Yang J, Geng N, Fan Y, Gou X, Sun Q, Chen J (2022) A Membrane-Supported Bifunctional Poly(amidoxime-ethyleneimine) Network for Enhanced Uranium Extraction from Seawater and Wastewater. J Hazard Mater 425:127995

    Article  CAS  Google Scholar 

  9. Yang X, Zhang Z, Kuang S, Wei H, Li Y, Wu G, Geng A, Li Y, Liao W (2020) Removal of thorium and uranium from leach solutions of ion-adsorption rare earth ores by solvent extraction with Cextrant 230. Hydrometallurgy 194:105343

    Article  CAS  Google Scholar 

  10. Jun B-M, Lee H-K, Park S, Kim T-J (2021) Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials. Sep Purif Technol 278:119675

    Article  Google Scholar 

  11. Wang Y, Wang Z, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2015) Uranium(VI) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes. J Radioanal Nucl Ch 304:1329–1337

    Article  CAS  Google Scholar 

  12. Gu Z, Wang Y, Tang J, Yang J, Liao J, Yang Y, Liu N (2015) The removal of uranium(VI) from aqueous solution by graphene oxide–carbon nanotubes hybrid aerogels. J Radioanal Nucl Ch 303:1835–1842

    CAS  Google Scholar 

  13. Hu X, Wang Y, Wu P, Li Y, Tu H, Wang C, Yuan D, Liu Y, Cao X, Liu Z (2020) Preparation of graphene/graphene nanoribbons hybrid aerogel and its application for the removal of uranium from aqueous solutions. J Radioanal Nucl Ch 325:207–215

    Article  CAS  Google Scholar 

  14. Hu X, Wang Y, Yang JO, Li Y, Wu P, Zhang H, Yuan D, Liu Y, Wu Z, Liu Z (2020) Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions. Front Chem Sci Eng 14:1029–1038

    Article  CAS  Google Scholar 

  15. Qiu B, Tao X, Wang H, Li W, Ding X, Chu H (2021) Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J Anal Appl Pyrol 155:105081

    Article  CAS  Google Scholar 

  16. Huang Q, Song S, Chen Z, Hu B, Chen J, Wang X (2019) Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar 1:45–73

    Article  Google Scholar 

  17. Tan X-F, Zhu S-S, Wang R-P, Chen Y-D, Show P-L, Zhang F-F, Ho S-H (2021) Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups. Chin Chem Lett 32:2939–2946

    Article  CAS  Google Scholar 

  18. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378

    Article  CAS  Google Scholar 

  19. Tu W, Liu Y, Xie Z, Chen M, Ma L, Du G, Zhu M (2021) A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. J Colloid Interface Sci 593:390–407

    Article  CAS  Google Scholar 

  20. Erses Yay AS, Birinci B, Açıkalın S, Yay K (2021) Hydrothermal carbonization of olive pomace and determining the environmental impacts of post-process products. J Clean Prod 315:128087

    Article  CAS  Google Scholar 

  21. Chen C, Liu G, An Q, Lin L, Shang Y, Wan C (2020) From wasted sludge to valuable biochar by low temperature hydrothermal carbonization treatment: Insight into the surface characteristics. J Clean Prod 263:121600

    Article  CAS  Google Scholar 

  22. Zhou N, Chen H, Xi J, Yao D, Zhou Z, Tian Y, Lu X (2017) Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresour Technol 232:204–210

    Article  CAS  Google Scholar 

  23. Fitri Faradilla RH, Lucia L, Hakovirta M (2021) Hydrothermal carbonization of soybean hulls for the generation of hydrochar: A promising valorization pathway for low value biomass. Environ Nanotechnol Monit Manage 16:100571

    CAS  Google Scholar 

  24. Ahmed W, Mehmood S, Qaswar M, Ali S, Khan ZH, Ying H, Chen D-Y, Núñez-Delgado A (2021) Oxidized biochar obtained from rice straw as adsorbent to remove uranium (VI) from aqueous solutions. J Environ Chem Eng 9:105104

    Article  CAS  Google Scholar 

  25. Paschalidou P, Pashalidis I, Manariotis ID, Karapanagioti HK (2020) Hyper sorption capacity of raw and oxidized biochars from various feedstocks for U(VI). J Environ Chem Eng 8:103932

    Article  CAS  Google Scholar 

  26. Jin J, Li S, Peng X, Liu W, Zhang C, Yang Y, Han L, Du Z, Sun K, Wang X (2018) HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresour Technol 256:247–253

    Article  CAS  Google Scholar 

  27. Kumar S, Loganathan VA, Gupta RB, Barnett MO (2011) An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. J Environ Manage 92:2504–2512

    Article  CAS  Google Scholar 

  28. Li M, Li W, Liu S (2011) Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydr Res 346:999–1004

    Article  CAS  Google Scholar 

  29. Yang B, Liu Y, Liang Q, Chen M, Ma L, Li L, Liu Q, Tu W, Lan D, Chen Y (2019) Evaluation of activated carbon synthesized by one-stage and two-stage co-pyrolysis from sludge and coconut shell. Ecotoxicol Environ Saf 170:722–731

    Article  CAS  Google Scholar 

  30. Hyun SP, Davis JA, Sun K, Hayes KF (2012) Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ Sci Technol 46:3369–3376

    Article  CAS  Google Scholar 

  31. Ye T, Huang B, Wang Y, Zhou L, Liu Z (2020) Rapid removal of uranium(VI) using functionalized luffa rattan biochar from aqueous solution. Colloid Surf A 606:125480

    Article  CAS  Google Scholar 

  32. Hadjittofi L, Pashalidis I (2015) Uranium sorption from aqueous solutions by activated biochar fibres investigated by FTIR spectroscopy and batch experiments. J Radioanal Nucl Ch 304:897–904

    Article  CAS  Google Scholar 

  33. Yu X, Liu Y, Zhou Z, Xiong G, Cao X, Li M, Zhang Z (2014) Adsorptive removal of U(VI) from aqueous solution by hydrothermal carbon spheres with phosphate group. J Radioanal Nucl Ch 300:1235–1244

    Article  CAS  Google Scholar 

  34. Atia BM, Khawassek YM, Hussein GM, Gado MA, El-Sheify MA, Cheira MF (2021) One-pot synthesis of pyridine dicarboxamide derivative and its application for uranium separation from acidic medium. J ENVIRON CHEM ENG 9:105726

    Article  CAS  Google Scholar 

  35. Sanyal K, Chappa S, Pathak N, Pandey AK, Misra NL (2018) Trace element determinations in uranium by Total reflection X-Ray Fluorescence spectrometry using a newly developed polymer resin for major matrix separation. Spectrochim Acta B 150:18–25

    Article  CAS  Google Scholar 

  36. Solouk A, Mirzadeh H, Shokrgozar MA, Solati-Hashjin M, Najarian S, Seifalian AM (2011) The study of collagen immobilization on a novel nanocomposite to enhance cell adhesion and growth. Iran Biomed J 15:6–14

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21966005, 22166001, 22066002) and Open Project Foundation of Nuclear Technology Application Ministry of Education Engineering Research Center (East China University of Technology) (HJSJYB2020-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, Y., Xia, H. et al. Low-cost reed straw-derived biochar prepared by hydrothermal carbonization for the removal of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 331, 3915–3925 (2022). https://doi.org/10.1007/s10967-022-08421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08421-y

Keywords

Navigation