Skip to main content
Log in

Photo catalytic oxidation of TNT using TiO2-SiO2 nano-composite aerogel catalyst prepared using sol–gel process

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The degradation of nitro aromatics like trinitrotoluene (TNT) released in the waste water from explosive process plants is the serious problem due to toxic and explosive nature of TNT. The poor response of TNT to biodegradation enhanced the gravity of the problem. We have demonstrated that high specific surface area TiO2–SiO2 nano-composite aerogel is promising photo catalyst in successful treating of TNT contaminated aqueous solution. The TiO2–SiO2 composite aerogel with nominal content of 20 and 50% TiO2, used as catalyst, were prepared by co-precursor sol–gel method using titanium isopropaxide and tetramethylorthosilicate as source of titania and silica, respectively. The XRD studies confirmed formation of anatase phase of crystalline TiO2 with nano sized crystallites. The TiO2–SiO2 aerogel showed specific surface area of 1,107 and 485 m2/g for the aerogels containing 20 and 50% TiO2, respectively. The 100 ppm TNT solution was treated, in 700 ml capacity reaction vessel, using H2O2 oxidizer and TiO2–SiO2 aerogel catalyst in presence of UV light (8 W UV lamp). Using TiO2–SiO2 (50/50) aerogel with surface area of 485 m2/g, we succeeded to reduce the TOC to 1 ppm within 3.5 h where as using TiO2/SiO2 (20/80) aerogel with surface area of 1,107 m2/g, the TOC was reduced to about only 7 ppm in the same time. It revealed that the combination of high TiO2 content and high specific surface area is an important factor to achieve effective and faster degradation of TNT for complete mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bolt HM, Degen GH, Dorn SB, Plöttner S, Harth V (2006) Rev Environ Health 21:217–228

    Article  CAS  Google Scholar 

  2. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Appl Microbiol Biotechnol 54:605–618

    Article  CAS  Google Scholar 

  3. Britto R, Patel M, Spangberg M, Arnseth R, Bogle F (2010) US Patent No. US2010/0069702 A1

  4. Wujcik WJ, Lowe WL, Marks PJ, Sisk WE (1992) Environ Prog 11:178–189

    Article  CAS  Google Scholar 

  5. Maloney S, Adrian NR, Hickey RF, Heine RL (2002) J Hazard Mater 92:77–88

    Article  CAS  Google Scholar 

  6. Liou MJ, Lub MC, Chen JN (2003) Water Res 37:3172–3179

    Article  CAS  Google Scholar 

  7. Rodgers JD, Bunce NJ (2001) Water Res 35:2101–2111

    Article  CAS  Google Scholar 

  8. Liou MJ, Lu MC, Chen JN (2004) Chemosphere 57:1107–1114

    Article  CAS  Google Scholar 

  9. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1–21

    Article  CAS  Google Scholar 

  10. Hakki A, Dillert R, Bahnemann D (2009) Catal Today 144:154–159

    Article  CAS  Google Scholar 

  11. Ohtani B, Ogawa Y, Nishimoto S (1997) J Phys Chem B 101:3746–3752

    Article  CAS  Google Scholar 

  12. Kamble S, Sawant S, Pangarkar V, Schouten J (2003) J Chem Technol Biotechnol 78:865–872

    Article  CAS  Google Scholar 

  13. Müller C, Schneider M, Mallat T, Baiker A (2000) Appl Catal A 201:253–261

    Article  Google Scholar 

  14. Schmelling DC, Gray KA (1995) Water Res 29:2651–2662

    Article  CAS  Google Scholar 

  15. Dillert R, Brandt M, Fornefett I, Siebers U, Bahnemann D (1995) Chemosphere 30:2333–2341

    Article  Google Scholar 

  16. Castro A, Nunes MR, Carvalho AP, Costa FM, Florencio MH (2008) Solid State Sci 10:602–606

    Article  CAS  Google Scholar 

  17. Hanprasopwattana A, Rieker T, Sault A, Datye A (1997) Catal Lett 45:165–175

    Article  CAS  Google Scholar 

  18. Yuranova T, Mosteo R, Bandara J, Laub D, Kiwi J (2006) J Molec Catal A 244:160–167

    Article  CAS  Google Scholar 

  19. Yoshida H, Murata C, Hattori T (2000) J Catal 194:364–372

    Article  CAS  Google Scholar 

  20. Ingale S, Wagh P, Tripathi A, Kamble V, Ratanesh Kumar, Gupta S C, J Porous Mater. doi:10.1007/s10934-010-9410-4

  21. Horvath G, Kawazoe K (1983) J Chem Eng Jpn 16:470–475

    Article  CAS  Google Scholar 

  22. Zhao Y, Li C, Liu X, Gu F, Jiang H et al (2007) Mater Lett 61:79–83

    Article  CAS  Google Scholar 

  23. Kwon YG, Choi SY (2000) J Mater Sci 35:6075–6079

    Article  CAS  Google Scholar 

  24. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley Pub. Co., Reading, MA

    Google Scholar 

  25. Ingale S, Sastry P, Patra A, Tewari R, Wagh P, Gupta S (2010) J Sol-Gel Sci Technol 54:238–242

    Article  CAS  Google Scholar 

  26. Aguado J, Grieken R, López MM, Marugán J (2006) Appl Catal A 312:202–212

    Article  CAS  Google Scholar 

  27. Liu G, Sun C, Yang H, Smith S, Wang L, Lu G, Cheng H (2010) Chem Commun 46:755–757

    Article  CAS  Google Scholar 

  28. Pekakis PA et al (2006) Water Res 40:1276–1286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. A. K. Tyagi, Chemistry Division, BARC, for providing XRD facility. Authors are also thankful to Ratanesh Kumar, Rakesh Patel, Sonu Gavit and Sandip Virnak from Applied Physics Division, BARC, for their help in experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ingale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingale, S.V., Wagh, P.B., Tripathi, A.K. et al. Photo catalytic oxidation of TNT using TiO2-SiO2 nano-composite aerogel catalyst prepared using sol–gel process. J Sol-Gel Sci Technol 58, 682–688 (2011). https://doi.org/10.1007/s10971-011-2445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2445-4

Keywords

Navigation