Skip to main content

Advertisement

Log in

Synthesis of stabilized zirconia hollow nanoparticles: sugar as a template

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hollow zirconia (HZ) nanoparticles (NPs) are synthesized by a simple, versatile, and an efficient methodology based on sol–gel technique. Before gelation, zirconia sols of different molarities are treated ultrasonically for 10 min with sugar as a template. XRD results reveal that higher molarity of the sol results in higher tetragonal zirconia (t-ZrO2) content. SEM images show the formation of HZ with diameter ~50 nm at relatively higher molarities of sol. Internal structure of sugar acts as an initiator for hydrolysis of zirconia, resulting in the formation of a smooth zirconia shell on the sugar surface. Sugar has been separated carefully for the formation of HZ NPs. FT-IR spectrum shows the formation of ZrO2 bond along with the appearance of stretching C–C bond in NPs synthesized using the highest molar sol. As-synthesized ZrO2 NPs have high value of hardness (up to 852 HV). These optimized HZ NPs can be used as capsule for drug delivery, template for synthesis of controlled-size NPs in biological implants, etc. To the best of our knowledge, HZ NPs, using sugar as template, have never been reported through sol–gel method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo C, Hu P, Yu L, Yuan F (2009) Mater Lett 63:1013–1015

    Article  Google Scholar 

  2. Gole JL, Prokes SM, Stout JD, Glembocki OJ, Yang RS (2006) Adv Mater 18:664–667

    Article  Google Scholar 

  3. Huang XQ, Guo CY, Zuo JQ, Zhang NF, Stucky GD (2009) Small 5:361–365

    Article  Google Scholar 

  4. Guttel R, Paul M, Schuth F (2010) Chem Commun 46:895–897

    Article  Google Scholar 

  5. Lin FQ, Dong WS, Liu CL, Liu ZT, Li MY (2008) J Colloid Interface Sci 323:365–371

    Article  Google Scholar 

  6. Tang SH, Huang HQ, Chen XL, Zheng NY (2010) Adv Funct Mater 20:2442–2447

    Article  Google Scholar 

  7. Qin D, Yan E, Yu J, Zhang W, Liu B, Yang X (2012) Mater Chem Phys 136:688–697

    Article  Google Scholar 

  8. Nomura T, Morimoto Y, Tokumoto H, Konishi Y (2008) Mater Lett 62:3727–3729

    Article  Google Scholar 

  9. Kim JY, Yoon SB, Yu JS (2003) Chem Commun 6:790–791

    Article  Google Scholar 

  10. Yoon SB, Kim JY, Kim JH, Park SG, Kim JY, Lee CW, Yu JS (2006) Curr Appl Phys 6:1059–1063

    Article  Google Scholar 

  11. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) J Control Release 166:182–194

    Article  Google Scholar 

  12. Ramesh TR, Gangaiah M, Harish PV, Krishnakumar U, Nandakishore B (2012) Trends Biomater Artif Organs 26:154–160

    Google Scholar 

  13. Takano T, Sakurai K (2013) Int J Prosthodont Dent 3:153–156

    Google Scholar 

  14. Goharshadi EK, Hadadian M (2012) Ceram Int 38:1771–1777

    Article  Google Scholar 

  15. Inokoshi M, Zhang F, Munck JD, Minakuchic S, Naerta I, Vleugels J, Meerbeek BV, Vanmeensel K (2014) Dent Mater 30:669–678

    Article  Google Scholar 

  16. Davar F, Hassankhani A, Estarki MRL (2013) Ceram Int 39:2933–2941

    Article  Google Scholar 

  17. Li C, Li K, Li H, Zhang Y, Ouyang H, Liu L, Sun C (2013) J Alloy Compd 561:23–27

    Article  Google Scholar 

  18. Bashir M, Riaz S, Naseem S (2014) IEEE Trans Magn. doi:10.1109/TMAG.2014.2312207

    Google Scholar 

  19. Bashir M, Riaz S, Naseem S (2014) J Sol-Gel Sci Technol. doi:10.1007/s10971-014-3415-4

    Google Scholar 

  20. Ruiz-Rosas R, Bedia J, Rosas JM, Lallave M, Loscertales IG, Rodríguez-Mirasol J, Corderoa T (2012) Catal Today 187:77–87

    Article  Google Scholar 

  21. Estarki MRL, Oghaz MH, Edris H, Razavi RS (2013) Cryst Eng Comm 15:5898–5909

    Article  Google Scholar 

  22. Kim SD, Hwang KS (2011) Mater Sci Appl 2:1–5

    Google Scholar 

  23. Arnal PM, Weidenthaler C, Schuth F (2006) Chem Mater 18:2733–2739

    Article  Google Scholar 

  24. Xia YN, Mokaya R (2005) J Mater Chem 15:3126–3131

    Article  Google Scholar 

  25. Heshmatpour F, Aghakhanpour RB (2011) Powder Technol 205:193–200

    Article  Google Scholar 

  26. Bashir M, Riaz S, Kayani ZN, Naseem S (2014) J Sol-Gel Sci Technol. doi:10.1007/s10971-014-3447-9

    Google Scholar 

  27. Mahmood Q, Humaira AA, Siddiqi M, Habib A (2013) J Sol-Gel Sci Technol 67:670–675

    Article  Google Scholar 

  28. Denry I, Kelly JR (2008) Dent Mater 24:299–307

    Article  Google Scholar 

  29. Sahu HR, Rao GR (2000) Bull Mater Sci 23:349–354

    Article  Google Scholar 

  30. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley, USA

    Google Scholar 

  31. Riaz S, Naseem S (2007) J Mater Sci Technol 23:499–503

    Google Scholar 

  32. Garvie RC (1965) J Phys Chem 69:1238–12343

    Article  Google Scholar 

  33. Giri PK, Galvagno G, Ferla AL, Rimini E, Coffa S, Raineri V (2000) Mater Sci Eng B 71:186–191

    Article  Google Scholar 

  34. Hallmann L, Ulmer P, Reusser E, Louvel M, Hämmerle CHF (2012) J Eur Ceram Soc 32:4091–4104

    Article  Google Scholar 

  35. Lopez P, Alvarez M, Gomez R (2005) J Sol Gel Sci Technol 33:93–97

    Article  Google Scholar 

  36. Ivanova T, Harizanova A, Koutzarova T, Vertruyen B (2010) Cryst Res Technol 45:1154–1160

    Article  Google Scholar 

  37. Majedi A, Davar F, Abbasi A (2014) J Ind Eng Chem. doi:10.1016/j.jiec.2014.01.023

    Google Scholar 

  38. Chen S, Yin Y, Wang D, Liu Y, Wang X (2005) J Cryst Growth 282:498–505

    Article  Google Scholar 

  39. Raileanu M, Todan L, Crişan D, Dragan N, Crisan M, Stan C, Andronescu C, Voicescu M, Vasile BS, Ianculescu A (2012) J Alloy Compd 517:157–163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Naseem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, S., Bashir, M. & Naseem, S. Synthesis of stabilized zirconia hollow nanoparticles: sugar as a template. J Sol-Gel Sci Technol 74, 275–280 (2015). https://doi.org/10.1007/s10971-015-3707-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3707-3

Keywords

Navigation