Skip to main content
Log in

Modification of surface morphology and lattice order in nanocrystalline ZnO thin films prepared by spin-coating sol–gel method

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The surface morphology and structure of zinc oxide thin films play a key role in many applications such as chemical sensors and photocatalysts. In this study, ZnO thin films are prepared on Si/SiO2 substrates by spin-coating sol–gel technique. New element in the films preparation is the application of drying with hot air flow (Th= 90–95 °C), as first step of the drying procedure, followed by furnace drying as second step. It is shown that hot air drying has significant influence on the films properties. It reduces the internal stress, strongly affects the films surface morphology, gives assistance to the effusion of organic remains and results in a better crystallinity and lower defect density in the as-prepared films when compared with the films prepared by furnace drying only. Besides, first data on the modification of sol–gel ZnO films by post-deposition irradiation with a nanosecond infrared laser are obtained, giving an alternative to the standard furnace annealing. They indicate that laser irradiation of as-prepared ZnO films gives rise to certain improvement in crystal structure and slight increase in crystallite size, followed by the increase of micro-strain. It also reduces the number of defects playing role of non-radiative recombination centers, as well as the size and density of small cracks and pores on the surface of as-prepared films.

Left: X-ray diffraction patterns of as-prepared and annealed at 400 °C ZnO films prepared by furnace drying only, the patterns are taken on non-irradiated and laser-irradiated films. Middle: Experimental and fitted E2high Raman mode in the spectra of non-irradiated and laser-irradiated samples prepared by two-step drying, as - the asymmetry fitting parameter. Right: Optical and AFM surface images of annealed ZnO films prepared by one-step drying; the AFM images were obtained at two different scales.

Highlights

  • Zinc oxide thin films of densely packed nanograins are prepared by sol–gel method.

  • Hot air drying during films preparation and post-deposition infrared laser irradiation are applied.

  • The hot air drying has strong influence on the internal strain and surface morphology.

  • The laser irradiation reduces the size and density of pores and cracks on the surface.

  • Defect density decreases but internal strain increases upon the laser annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material (data transparency)

All data described in the manuscript are available to all co-authors.

Code availability (software application or custom code)

Graphics program used: OriginPro 8.6.0 (64-bit) Sr3, Serial Number: GF3S5-6089-7606559, Registration ID: UHD-6YQ-8A1.

The AFM image analysis was done by means of Nanoscope 7.30 programme.

References

  1. Borysiewicz MA (2019) ZnO as a functional material, a review. Crystals 9:505–533. https://doi.org/10.3390/cryst9100505

    Article  CAS  Google Scholar 

  2. Katayama M (1999) TFT-LCD technology. Thin Solid Films 341:140–147. https://doi.org/10.1016/S0040-6090(98)01519-3

    Article  CAS  Google Scholar 

  3. Hung LS, Chen CH (2002) Recent progress of molecular organic electroluminescent materials and devices. Mater Sci Eng R 39:143–222. https://doi.org/10.1016/S0927-796X(02)00093-1

    Article  Google Scholar 

  4. Rech B, Wagner H (1999) Potential of amorphous silicon for solar cells. Appl Phys A 69:155–167. https://doi.org/10.1007/s003390050986

    Article  CAS  Google Scholar 

  5. Pauporte T, Lincot D (1999) Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride. Appl Phys Lett 75:3817–3819. https://doi.org/10.1063/1.125466

    Article  CAS  Google Scholar 

  6. Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng B 80(1-3):383–387. https://doi.org/10.1016/S0921-5107(00)00604-8

    Article  Google Scholar 

  7. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301. https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  8. Guziewicz E, Godlewski M, Krajewski T, Wachnicki Ł, Szczepanik A, Kopalko K, Wójcik-Głodowska A, Przeździecka E, Paszkowicz W, Łusakowska E, Kruszewski P, Huby N, Tallarida G, Ferrari S (2009) ZnO grown by atomic layer deposition: a material for transparent electronics and organic heterojunctions. J Appl Phys 105(12):122413. https://doi.org/10.1063/1.3133803

    Article  CAS  Google Scholar 

  9. Muslih EY, Munir B (2018) In: Ameen S, Akhtar MS, Shin H-S (eds) Emerging solar energy materials. Intech Open Limited, London

  10. Baruah S, Joydeep Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001. https://doi.org/10.1088/1468-6996/10/1/013001

    Article  CAS  Google Scholar 

  11. Wang J, Cui W, Zhu L, Wang J, Wei Q, Chen Z, Shan M, Yuan X, Hua J (2020) Structural, optical, and magnetic properties of low temperature hydrothermal synthesized (Gd, Al)-codoped ZnO nanoparticles. J Sol-Gel Sci Technol 93:193–201. https://doi.org/10.1007/s10971-019-05160-7

    Article  CAS  Google Scholar 

  12. Znaidi L (2010) Sol-gel deposited ZnO thin films: a review. Mater Sci Eng B 174(1-3):18–30. https://doi.org/10.1016/j.mseb.2010.07.001

    Article  CAS  Google Scholar 

  13. Kim HT, Lee S-Y, Park Ch (2017) Controls of surface morphology on sol-gel derived ZnO films under isothermal treatment conditions. Vacuum 143:312–315. https://doi.org/10.1016/j.vacuum.2017.06.034

    Article  CAS  Google Scholar 

  14. Palneedi H, Park JH, Maurya D, Peddigari M, Hwang G‐T, Annapureddy V, Kim J‐W, Choi J‐J, Hahn B‐D, Priya S, Lee KJ, Ryu J (2018) Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv Mater 30(14):1705148. https://doi.org/10.1002/adma.201705148

    Article  CAS  Google Scholar 

  15. Lu H, Tu Y, Lin X, Fang B, Luo D, Laaksonen A (2010) Effects of laser irradiation on the structure and optical properties of ZnO thin films. Mater Lett 64:2072–2075. https://doi.org/10.1016/j.matlet.2010.06.022

    Article  CAS  Google Scholar 

  16. Tsay C-Y, Wang M-C (2013) Structural and optical studies on sol–gel derived ZnO thin films by excimer laser annealing. Ceram Int 39:469–474. https://doi.org/10.1016/j.ceramint.2012.06.050

    Article  CAS  Google Scholar 

  17. Hsiao W-T, Tseng S-F, Chung Ch-K, Chiang D, Huang K-Ch, Lin K-M, Li L–Y, Chen M-F (2015) Effect on structural, optical and electrical properties of aluminum-doped zinc oxide films using diode laser annealing. Opt Laser Technol 68:41–47. https://doi.org/10.1016/j.optlastec.2014.11.009

    Article  CAS  Google Scholar 

  18. Zhao S, Hua Y, Chen R, Zhang J, Ji P (2016) Structural and electrical studies on ZnO-based thin films by laser irradiation. J Nanotechnol 2016:9385725. https://doi.org/10.1155/2016/9385725

    Article  CAS  Google Scholar 

  19. Elhamali SO, Cranton WM, Kalfagiannis N, Hou X, Ranson R, Koutsogeorgis DC (2016) Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing. Opt Laser Eng 80:45–51. https://doi.org/10.1016/j.optlaseng.2015.12.010

    Article  Google Scholar 

  20. Vajargah PH, Abdizadeh H, Ebrahimifard R, Golobostanfard MR (2013) Sol-gel derived ZnO thin films: effect of amino-additives. Appl Surf Sci 285B:732–743. https://doi.org/10.1016/j.apsusc.2013.08.118

    Article  CAS  Google Scholar 

  21. Khan MI, Bhatti KA, Qindeel R, Alonizan N, Saeed Althobaiti H (2017) Characterizations of multilayer ZnO thin films deposited by sol-gel spin-coating technique. Results Phys 7:651–655. https://doi.org/10.1016/j.rinp.2016.12.029

    Article  Google Scholar 

  22. Raoufi D, Raoufi T (2009) The effect of heat treatment on the physical properties of sol-gel derived ZnO thin films. Appl Surf Sci 255:5812–5817. https://doi.org/10.1016/j.apsusc.2009.01.010

    Article  CAS  Google Scholar 

  23. Gegova-Dzhurkova R, Nesheva D, Mihailov V, Dzhurkov V, Terziyska P, Manolov E (2021) Effect of infrared laser irradiation on electrical conductivity and ethanol sensitivity of sol-gel ZnO thin films. J Phys Conf Ser 1762:012037. https://doi.org/10.1088/1742-6596/1762/1/012037

    Article  CAS  Google Scholar 

  24. Musić S, Filipović-Vinceković N, Sekovanić L (2011) Precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng 28:89–94. https://doi.org/10.1590/S0104-66322011000100011

    Article  Google Scholar 

  25. Gao D, Zhang Z, Fu J, Xu Y, Qi J, Xue D (2009) Room-temperature ferromagnetism of pure ZnO nanoparticles. J Appl Phys 105:113928. https://doi.org/10.1063/1.3143103

    Article  CAS  Google Scholar 

  26. Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8:123–134. https://doi.org/10.1007/s40094-014-0141-9

    Article  Google Scholar 

  27. Moram MA, Vickers ME (2009) X-ray diffraction of III-nitrides. Rep Prog Phys 72:036502 (1–40). https://doi.org/10.1088/0034-4885/72/3/036502

  28. Znaidi L, Touam T, Vrel D, Souded N, Yahia BS, Brinza O, Fischer A, Boudrioua A (2012) ZnO thin films synthesized by sol-gel process for photonic applications. Acta Phys Pol A 121:165–168. https://doi.org/10.12693/APhysPolA.121.165

    Article  CAS  Google Scholar 

  29. Kaneva NV, Dushkin CD (2011) Preparation of nanocrystalline thin films of ZnO by sol-gel dip coating. Bulg Chem Commun 43:259–263

    CAS  Google Scholar 

  30. Sutanto H, Durri S, Wibowo S, Hadiyanto H, Hidayanto EE (2016) Rootlike morphology of ZnO:Al thin film deposited on amorphous glass substrate by Sol-gel method. Phys Res Int 2016:4749587. https://doi.org/10.1155/2016/4749587

    Article  CAS  Google Scholar 

  31. Haas DE, Quijada JN, Picone SJ, Birnie III DP (2000) Effect of solvent evaporation rate on skin formation during spin-coating of complex solutions. Proc SPIE Sol-gel Opt V 3943:280–284. https://doi.org/10.1117/12.384348

    Article  CAS  Google Scholar 

  32. Tsay Ch-Y, Fan К-SH, Wang Y-W, Chang Ch-j, Tseng Y-K, Lin Ch-K (2010) Transparent semiconductor zinc oxide thin films deposited on glass substrates by sol-gel process. Ceram Int 36:1791–179. https://doi.org/10.1016/j.ceramint.2010.03.005

    Article  CAS  Google Scholar 

  33. Srikant V, Clarke DR (1998) On the optical band gap of zinc oxide. J Appl Phys 83:5447–5451. https://doi.org/10.1063/1.367375

    Article  CAS  Google Scholar 

  34. Singh M, Singh M (2013) Thermal expansion in zinc oxide nanomaterials. Nanosci Nanotechnol Res 1:27–29. https://doi.org/10.12691/nnr-1-2-4

    Article  Google Scholar 

  35. El-Kareh B (1995) Fundamentals of semiconductor processing technologies. Kluwer Academic Publishers, Boston

  36. Šćepanović M, Grujić-Brojčin M, Vojisavljević K, Bernik S, Srećković T (2010) Raman study of structural disorder in ZnO nanopowders. J Raman Spectrosc 41:914–921. https://doi.org/10.1002/jrs.2546

    Article  CAS  Google Scholar 

  37. Ashkenov N, Mbenkum BN, Bundesmann C, Riede V, Lorenz M, Spemann D, Kaidashev EM, Kasic A, Schubert M, Grundmann M, Wagner G, Neumann H, Darakchieva V, Arwin H, Monemar B (2003) Infrared dielectric functions and phonon modes of high-quality ZnO films. J Appl Phys 93:126–133. https://doi.org/10.1063/1.1526935

    Article  CAS  Google Scholar 

  38. Alim K, Fonoberov VA, Shamsa M, Balandin AA (2005) Micro-Raman investigation of optical phonons in ZnO quantum dots. J Appl Phys 97:124313. https://doi.org/10.1063/1.1944222

    Article  CAS  Google Scholar 

  39. Zielony E, Wierzbicka A, Szymon R, Pietrzyk MA, Placzek-Popko E (2021) Investigation of micro-strain in ZnO/(Cd, Zn)O multiple quantum well nanowires grown on Si by MBE. Appl Surf Sci 538:148061. https://doi.org/10.1016/j.apsusc.2020.148061

    Article  CAS  Google Scholar 

  40. Harriman TA, Bi Z, Jia QX, Lucca DA (2013) Frequency shifts of the E2high Raman mode due to residual stress in epitaxial ZnO thin films. Appl Phys Lett 103:121904. https://doi.org/10.1063/1.4821222

    Article  CAS  Google Scholar 

  41. Korepanov VI, Sedlovets DM (2018) Asymmetric fitting function for condensed-phase Raman spectroscopy. Analyst 143:2674–2679. https://doi.org/10.1039/C8AN00710A

    Article  CAS  Google Scholar 

  42. Gruber TH, Prinz GM, Kirchner C, Kling R, Reuss F, Limmer W, Waag A (2004) Influences of biaxial strains on the vibrational and exciton energies in ZnO. J Appl Phys 96:289–293. https://doi.org/10.1063/1.1755433

    Article  CAS  Google Scholar 

  43. Yu Y, Lin K, Zhou X, Wang H, Liu S, Ma X (2007) New C-H stretching vibrational spectral features in the Raman spectra of gaseous and liquid ethanol. J Phys Chem C 111:8971–8978. https://doi.org/10.1021/jp0675781

    Article  CAS  Google Scholar 

  44. Horiba Jobin Yvon Raman Application note (2021) Raman Spectroscopy for Analysis and Monitoring. https://static.horiba.com/fileadmin/Horiba/Technology/Measurement_Techniques/Molecular_Spectroscopy/Raman_Spectroscopy/Raman_Academy/Raman_Tutorial/Raman_bands.pdf

  45. Nateq MH, Ceccato R (2019) Enhanced sol–gel route to obtain a highly transparent and conductive aluminum-doped zinc oxide thin film. Materials 12:1744. https://doi.org/10.3390/ma12111744

    Article  CAS  Google Scholar 

  46. Saravanan P, Gnanavelbabu A, Pandiyaraj P (2018) Effect of pre-annealing on thermal and optical properties of ZnO and Al–ZnO thin films. Int J Nanosci 17:1760017. https://doi.org/10.1142/S0219581X17600171

    Article  CAS  Google Scholar 

  47. O’Reilly EP, Robertson J (1983) Theory of defects in vitreous silicon dioxide. Phys Rev B 27:3780–3795. https://doi.org/10.1103/PhysRevB.27.3780

    Article  Google Scholar 

  48. Tohmon R, Shimogaichi Y, Munekuni S, Ohki Y, Hama Y (1989) Relation between the 1.9 eV luminescence and 4.8 eV absorption bands in high‐purity silica glass. Appl Phys Lett 54:1650–1652. https://doi.org/10.1063/1.101396

    Article  CAS  Google Scholar 

  49. Skuja L (1998) Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J Non-Cryst Solids 239:16–48. https://doi.org/10.1016/S0022-3093(98)00720-0

    Article  CAS  Google Scholar 

  50. Skuja L, Hirano M, Hosono H, Kajihara K (2005) Defects in oxide glasses. Phys Status Solidi (c) 2:15–24. https://doi.org/10.1002/pssc.200460102

    Article  CAS  Google Scholar 

  51. Gomi M, Oohira N, Ozaki K, Koyano M (2003) Photoluminescent and structural properties of precipitated ZnO fine particles. Jpn J Appl Phys 42(2R):481–485. https://doi.org/10.1143/JJAP.42.481

    Article  CAS  Google Scholar 

  52. Djurišić AB, Leung YH, Tam KH, Hsu YF, Ding L, Ge WK, Zhong YC, Wong KS, Chan WK, Tam HL, Cheah KW, Kwok WM, Phillips DL (2007) Defect emissions in ZnO nanostructures. Nanotechnology 18:095702. https://doi.org/10.1088/0957-4484/18/9/095702

    Article  CAS  Google Scholar 

  53. Musavi E, Khanlary M, Khakpour Z (2019) Red-orange photoluminescence emission of sol-gel dip-coated prepared ZnO and ZnO: Al nano-crystalline films. J Lumin 216:116696. https://doi.org/10.1016/j.jlumin.2019.116696

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RG-D gratefully acknowledge the financial support provided by the Bulgarian Ministry of Education and Science, National program “Young scientists and postdoctoral researchers” approved by DCM N577, 17.08.2018. DN and IB acknowledge the financial support provided by the European Regional Development Fund within the OP “Science and Education for Smart Growth 2014 - 2020”, project No BG05M2OP001-1.001-0008. MS, MG-B, and ZP are thankful to the Institute of Physics, Belgrade and Ministry of Education, Science and Technological Development of the Republic of Serbia. All authors are thankful to the Bulgarian Academy of Sciences and Serbian Academy of Sciences and Arts (bilateral project “Preparation and characterization of nanostructured semiconductor thin films for sensor application”).

Funding

(information that explains whether and by whom the research was supported). RG-D gratefully acknowledge the financial support provided by the Bulgarian Ministry of Education and Science, National program “Young scientists and postdoctoral researchers” approved by DCM N577, 17.08.2018. DN and IB acknowledge the financial support provided by the European Regional Development Fund within the OP “Science and Education for Smart Growth 2014 - 2020”, project No BG05M2OP001-1.001-0008. MS, MG-B and ZP are thankful to the Institute of Physics, Belgrade and Ministry of Education, Science and Technological Development of the Republic of Serbia. All authors are thankful to the Bulgarian Academy of Sciences and Serbian Academy of Sciences and Arts (bilateral project „Preparation and characterization of nanostructured semiconductor thin films for sensor application“).

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear in the application have contributed significantly to the concept or design of the work; acquisition, analysis or interpretation of data.

Corresponding author

Correspondence to D. Nesheva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gegova-Dzhurkova, R., Nesheva, D., Dzhurkov, V. et al. Modification of surface morphology and lattice order in nanocrystalline ZnO thin films prepared by spin-coating sol–gel method. J Sol-Gel Sci Technol 100, 55–67 (2021). https://doi.org/10.1007/s10971-021-05635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05635-6

Keywords

Navigation