Skip to main content
Log in

Improvement of window thermal performance using aerogel insulation film for building energy saving

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In buildings, windows have a major influence on space heating demand and indoor environment both with respect to climate and daylight. To reduce the window coefficient of the overall heat transmission, we use aerogel. Aerogels have a high surface area, low density, open pore structure, and excellent insulation properties. We mixed pressure sensitive adhesive and aerogel (10, 15, and 20 mass%) using a homogenizer. A mixture of the adhesives and silica aerogels attached film can reduce thermal conductivity. Silica aerogels are characterized by a surface area analyzer (BET), a Fourier transform infrared spectrometer, a thermogravimetry (TG) analyzer, and probe tack method. Thermal conductivity was measured by a TCi thermal conductivity analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baetens R, Jelle BP, Gustavsen A. Aerogel insulation for building applications: a state-of-the-art review. Energy Build. 2011;43:761–9.

    Article  Google Scholar 

  2. Cha J, Seo J, Kim S. Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi. J Therm Anal Calorim. 2012;109:295–300.

    Article  CAS  Google Scholar 

  3. Schultz JM, Jensen KI. Evacuated aerogel glazings. Vacuum. 2008;82:723–9.

    Article  CAS  Google Scholar 

  4. Smith DM, Maskara A, Boes U. Aerogel-based thermal insulation. J Non Cryst Solids. 1998;225:254–9.

    Article  CAS  Google Scholar 

  5. Zeng SQ, Hunt AJ, Cao W, Greif R. Pore size distribution and apparent thermal conductivity of silica aerogel. J Heat Transf. 1994;116:756–9.

    Article  CAS  Google Scholar 

  6. Bommel MJ, Engelsen CW, Miltenburg JC. A thermoporometry study of fumed silica/aerogel composites. J Porous Mater. 1997;4:143–50.

    Article  Google Scholar 

  7. Gesser HD, Goswami PC. Aerogels and related porous materials. Chem Rev. 1989;89:765–88.

    Article  CAS  Google Scholar 

  8. Silveira NP, Ehrburger-Delle F, Rochas C, Rigacci A, Bargas-Pereira F, Westfahl H. Smectic ordering in polymer liquid crystal-silica aerogel nanocomposites. J Therm Anal Calorim. 2005;79:579–85.

    Article  CAS  Google Scholar 

  9. Jesenak K, Kuchta L, Hudec P, Fajnor VS. Calcination of SiO2-aerogel in oxidizing atmosphere. J Therm Anal Calorim. 1999;55:773–7.

    Article  CAS  Google Scholar 

  10. Richter K, Norris PM, Chang CL. Aerogels: applications, structure and heat transfer phenomena. Annu Rev Heat Transf. 1995;6:61–114.

    CAS  Google Scholar 

  11. Zhao J, Duan Y, Wang X, Wang B. Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation. Int J Heat Mass Transf. 2012;55:5196–204.

    Article  CAS  Google Scholar 

  12. Zhao J, et al. Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation. Int J Therm Sci. 2013;70:54–64.

    Article  CAS  Google Scholar 

  13. Kim S, Seo J, Cha J, Kim S. Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Constr Build Mater. 2013;40:501–5.

    Article  Google Scholar 

  14. Schmidt M, Schwertfeger F. Applications for silica aerogel products. J Non Cryst Solids. 1998;225:364–8.

    Article  CAS  Google Scholar 

  15. Wei G, Liu Y, Zhang X, Yu F, Du X. Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf. 2011;54:2355–66.

    Article  CAS  Google Scholar 

  16. Lu X, Ardunini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW. Thermal conductivity of monolithic organic aerogels. Science. 1992;255:971–2.

    Article  CAS  Google Scholar 

  17. Kim S, Drzal LT. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells. 2009;93:136–42.

    Article  CAS  Google Scholar 

  18. Kim H, Lee B, Choi S, Kim S, Kim H. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos A. 2007;38:1473–82.

    Article  CAS  Google Scholar 

  19. Kuvandykova D. A new transient method to measure thermal conductivity of asphalt. C-Therm Technol. 2010;2:1–10.

    Google Scholar 

  20. Kuvandykova D, St-Laurent R. Application of the modified transient plane source technique in testing the thermal conductivity of concrete. C-Therm Technol. 2010;18:1–7.

    Google Scholar 

  21. Joo HS, Do HS, Park YJ, Kim HJ. Adhesion performance of UV-cured semi-IPN structure acrylic pressure sensitive adhesives. J Adhes Sci Technol. 2006;20:1573–94.

    Article  CAS  Google Scholar 

  22. Kim B, Kim S, Do H, Kim S, Kim H. Probe tack of tackified acrylic emulsion PSAs. Int J Adhes Adhes. 2007;27:102–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Soongsil University Research Fund of 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cha, J., Kim, S., Park, KW. et al. Improvement of window thermal performance using aerogel insulation film for building energy saving. J Therm Anal Calorim 116, 219–224 (2014). https://doi.org/10.1007/s10973-013-3521-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3521-5

Keywords

Navigation