Skip to main content
Log in

Development of the hot wire technique for finite geometry samples

Estimation of thermal properties of soil

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hot wire technique is widely used to determine the thermal properties of materials. Commonly, this technique is developed for considered infinite radius of cylindrical mediums. Here, we propose an analytical solution of the heat conduction problem in an insulated finite sample. The derived temperature solution is found mathematically to be non-regular convergent series, and lead to avoid the assumption of infinite geometries, difficult to realize in practice. The first part of this paper concerns the study of the calculability of this series. The second one deals with the thermal properties estimation. The sensitivity study shows that the estimation procedure is feasible either using the concept of the time of the maximum rising temperature or, when exploring large time measurements, using the least squares minimisation that has an equivalent pure graphical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wakeham WA, Assael MJ. Measurement, instrumentation and sensors handbook. Boca Raton: CRC Press; 2000.

    Google Scholar 

  2. Hladik J. Métrologie des propriétés thermo-physiques des matériaux. Paris: Masson; 1990.

    Google Scholar 

  3. Degiovanni A, Benjamin R, Métrologie thermique : une histoire, un appareil, une application, JITH—Tanger—Maroc—15/17 novembre 2005.

  4. Gustavsson M, Karawacki E, Gustafsson SE. Thermal conductivity, thermal diffusivity and specific heat of thin samples from transient measurements with hot disk sensors Rev. Sci Instrum. 1994;65:3856–9.

    Article  CAS  Google Scholar 

  5. Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys. 1961;32:1679.

    Article  CAS  Google Scholar 

  6. Watt DA. Theory of thermal diffusivity by pulse technique. Brit J Appl Phys. 1966;17:231.

    Article  CAS  Google Scholar 

  7. Vozar L, Hohenauer W. Flash method of measuring the thermal diffusivity. A review. High Temp-High Press. 2003;35:253.

    Article  Google Scholar 

  8. Tian F, Sun L, Mojumbar S, Prasad R. Absolute measurement of thermal conductivity of poly(acrylic acid) by transient hot wire technique. J Therm Anal Calorim. 2011;104(3):823.

    Article  CAS  Google Scholar 

  9. Sassi MBH, Dos Santos CAC, Da Silva ZE, Gurgel JM, Jose PA Jr. Heat conduction models for the transient hot wire technique. High Temp-High Press. 2009;2(38):97–117.

    Google Scholar 

  10. Carslaw HS, Jaeger JC. Operational methods in applied mathematics. London: Oxford University Press; 1953.

    Google Scholar 

  11. Zauderer E. Partial differential equations of applied mathematics. New Jersey: Wiley; 2006.

    Book  Google Scholar 

  12. Özisik MN. Heat conduction. New York: Wiley; 1993.

    Google Scholar 

  13. Abramowitz M, Stegun IA, Handbook of mathematical functions, US Department of Commerce, National Bureau of Standards Applied Mathematics, May 1968.

  14. Kurpisz K, Nowak AJ. Inverse thermal problems. Boston: Computational Mechanics Publications; 1995.

    Google Scholar 

  15. Beck JV, Woodbury KA. Inverse problems and parameters estimation: integration of measurements and analysis. Meas Sci Tech. 1998;9:839.

    Article  CAS  Google Scholar 

  16. Beck JV, Arnold KJ. Parameter estimation in engineering and science. New York: Wiley; 1977.

    Google Scholar 

  17. Minkowycz WJ, Sparrow EM, Schneider GE, Pletcher RH, editors. Hand-book of numerical heat transfer. New York: Wiley; 1988.

    Google Scholar 

  18. William HP, Brian PF, Saul AT, William TV. Numerical recipes (FORTRAN version). New York: Cambridge University Press; 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M’hamed Boutaous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sassi, M.B.H., Boutaous, M. Development of the hot wire technique for finite geometry samples. J Therm Anal Calorim 117, 943–951 (2014). https://doi.org/10.1007/s10973-014-3837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3837-9

Keywords

Navigation