Skip to main content
Log in

Heat transfer of water-based carbon nanotube nanofluids in the shell and tube cooling heat exchangers of the gasoline product of the residue fluid catalytic cracking unit

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, a series of low-concentration carbon nanotubes (CNT) water-based nanofluids (0.0055, 0.055, 0.111 and 0.278 vol%) were used as coolants in a shell and tube cooler of the residue fluid catalytic cracking gasoline product to analyze their effects on heat performance of the heat exchanger. The coolants and gasoline flow in tube side and shell side, respectively. This work was performed through simulating the heat exchanger by ASPEN HTFS+ 7.3 software. The performance of the nanofluids to heat transfer was analyzed in comparison with cooling water. Results illustrated that 0.055% CNT concentration could enhance heat transfer properties of the heat exchanger such as Nusselt number, total heat transfer coefficient and heat transfer rate more than other concentrations. Therefore, the lowest temperature of outlet shell-side fluid was also observed at this concentration. Moreover, increment in mass flow rates of both the tube-side and shell-side fluids caused enhancement of the heat transfer, especially with 0.055 vol% CNT. Although there is an optimum concentration among the studied CNT volume fractions, all nanofluids exhibit better thermal performance of the heat exchanger than cooling water, whereas pressure drop increases with CNT loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

A t :

Flow area of tube side (m2)

A s :

Total heat transfer area of tube outside (m2)

A cf :

Area of cross-flow (m2)

C min :

Minimum specific heat (J kg−1 K−1)

C p :

Fluid specific heat (J kg−1 K−1)

C μ :

Viscosity improvement coefficient

d i :

Inner tube diameter (m)

d o :

Outside tube diameter (m)

D e :

Equivalent diameter (m)

h ss :

Convection heat transfer coefficient for shell-side fluid (W m−2 K−1)

h nf :

Convection heat transfer coefficient for nanofluid (W m−2 K−1)

h hot :

Convection heat transfer coefficient for hot fluid (W m−2 K−1)

k nf :

Thermal conduction for nanofluid (W m−1 K−1)

k :

Thermal conduction for shell-side fluid (W m−1 K−1)

k w :

Thermal conduction for tube (W m−1 K−1)

m nf :

Nanofluid mass flow rate (kg s−1)

m ss :

Shell-side fluid mass flow rate (kg s−1)

Nu nf :

Nusselt number of nanofluid

Pr nf :

Prandtl number of nanofluid

Pr ss :

Prandtl number of shell side

f :

Friction factor

q :

Heat transfer rate (kW)

T hi :

Hot fluid outlet temperature (°C)

T ci :

Cold fluid outlet temperature (°C)

Re ss :

Shell-side fluid Reynolds number

Re nf :

Nanofluid Reynolds number

U :

Total heat transfer coefficient(W m−2 K−1)

μ nf :

Nanofluid viscosity (mPa s)

μ bf :

Base fluid viscosity (mPa s)

μ ss :

Shell-side fluid viscosity (mPa s)

\(\varphi\) :

Nanoparticle volume fraction

TLMTD :

Log mean temperature difference (°C)

\(\varepsilon\) :

Effectiveness of heat exchanger

References

  1. Ozsoy A, Corumlu V. Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications. Renew Energy. 2018;122:26–34.

    Article  CAS  Google Scholar 

  2. Nakhchi ME, Esfahani JA. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technol. 2018;339:985–94.

    Article  CAS  Google Scholar 

  3. Budak Ziyadanogullari N, Yucel HL, Yildiz C. Thermal performance enhancement of flat-plate solar collectors by means of three different nanofluids. Therm Sci Eng Prog. 2018;8:55–65.

    Article  Google Scholar 

  4. Kim S, Tserengombo B, Noh J, Choi SH, Huh S, Choi B, Chung H, Kim J, Jeong H. Experimental investigation of heat transfer coefficient with Al2O3 nanofluid in small diameter tubes. Appl Therm Eng. 2019;146:346–55.

    Article  CAS  Google Scholar 

  5. Sidik NAC, Yazid MNAWM, Samion S. A review on the use of carbon nanotubes nanofluid for energy harvesting system. Int J Heat Mass Transf. 2017;111:782–94.

    Article  CAS  Google Scholar 

  6. Yanwei H, Li H, He Y, Liu Z, Zhao Y. Effect of nanoparticle size and concentration on boiling performance of SiO2 nanofluid. Int J Heat Mass Transf. 2017;107:820–8.

    Article  Google Scholar 

  7. Sarviya RM, Fuskele V. Review on thermal conductivity of nanofluids. Mater Today Proc. 2017;4:4022–31.

    Article  Google Scholar 

  8. Bahiraei M, Rahmani R, Yaghoobi A, Khodabandeh E, Mashayekhi R, Amani M. Recent research contributions concerning use of nanofluids in heat exchangers: a critical review. Appl Therm Eng. 2018;133(25):137–59.

    Article  CAS  Google Scholar 

  9. Kumar V, Tiwari AK, Ghosh SK. Application of nanofluids in plate heat exchanger: a review. Energy Convers Manag. 2015;105:1017–36.

    Article  CAS  Google Scholar 

  10. Mikkola V, Puupponen S, Saari K, Ala-Nissila T, Seppälä A. Thermal properties and convective heat transfer of phase changing paraffin nanofluids. Int J Therm Sci. 2017;117:163–71.

    Article  CAS  Google Scholar 

  11. Sani E, Papi N, Mercatelli L, Żyła G. Graphite/diamond ethylene glycol-nanofluids for solar energy applications. Renew Energy. 2018;126:692–8.

    Article  CAS  Google Scholar 

  12. Rashidi S, Kashefi MH, Kim KC, Samimi-Abianeh O. Potentials of porous materials for energy management in heat exchangers—a comprehensive review. Appl Energy. 2019;243:206–32.

    Article  Google Scholar 

  13. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7350-4.

    Article  Google Scholar 

  14. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7164-4.

    Article  Google Scholar 

  15. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct-A numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  16. Parizad Laein R, Rashidi S, Abolfazli Esfahani J. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27:312–22.

    Article  CAS  Google Scholar 

  17. Maskaniyan M, Rashidi S, Esfahani JA. A two-way couple of Eulerian-Lagrangian model for particle transport with different sizes in an obstructed channel. Powder Technol. 2017;312:260–9.

    Article  CAS  Google Scholar 

  18. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems a review. Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6773-7.

    Article  Google Scholar 

  19. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  20. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, ClementKleinstreuer JS, Marshall RA, Taylor HN, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  21. Rashidi S, Hormozi F, Sundenc B, Mahian O. Energy saving in thermal energy systems using dimpled surface technology—a review on mechanisms and applications. Appl Energy. 2019;250:1491–547.

    Article  Google Scholar 

  22. Barzegariana R, Aloueyanb A, Yousefic T. Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation. Int Commun Heat Mass Transf. 2017;86:52–9.

    Article  Google Scholar 

  23. Shahrul IM, Mahbubul IM, Saidur R, Sabri MFM. Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger. Int J Heat Mass Transf. 2016;97:547–58.

    Article  CAS  Google Scholar 

  24. Hosseini SM, Vafajoo L, Salman BH. Performance of CNT-water nanofluid as coolant fluid in shell and tube intercooler of a LPG absorber tower. Int J Heat Mass Transf. 2016;102:45–53.

    Article  Google Scholar 

  25. Al-Abdali G, Maghrabie HM, Attalla M. Investigation of heat transfer and friction factor of Al2O3 nanofluid inside shell and tube heat exchanger. Sci Eng Res. 2018;5:549–56.

    CAS  Google Scholar 

  26. Aghabozorg MH, Rashidi A, Mohammadi S. Experimental investigation of heat transfer enhancement of Fe2O3-CNT/water magnetic nanofluids under laminar, transient and turbulent flow inside a horizontal shell and tube heat exchanger. Exp Thermal Fluid Sci. 2016;72:82–189.

    Article  Google Scholar 

  27. Mahian O, Kolsi L, Amani M, Estellé P, ClementKleinstreuer G, Marshall JS, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  28. Estellé P, Mahian O, Maré T, Öztop HF. Natural convection of CNT water based nanofluids in a differentially heated square cavity. J Therm Anal Calorim. 2017;128(3):1765–70.

    Article  Google Scholar 

  29. Minea AA, Estellé P. Numerical study on CNT nanofluids behavior in laminar pipe flow. J Mol Liq. 2018;271:281–9.

    Article  CAS  Google Scholar 

  30. Mohd-Ghazali N, Estellé P, Halelfadl S, Maré T, Choon Sionga T, Abidin U. Thermal and hydrodynamic performance of a microchannel heat sink with carbon nanotubes nanofluids: effect of concentration and channel section. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08260-2.

    Article  Google Scholar 

  31. Halelfadl S, Mare T, Estellé P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Thermal Fluid Sci. 2014;53:104–10.

    Article  CAS  Google Scholar 

  32. www.korenergy.co.kr.

  33. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16:359–68.

    Google Scholar 

  34. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52:2059–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Estellé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoud Hosseini, S., Safaei, M.R., Estellé, P. et al. Heat transfer of water-based carbon nanotube nanofluids in the shell and tube cooling heat exchangers of the gasoline product of the residue fluid catalytic cracking unit. J Therm Anal Calorim 140, 351–362 (2020). https://doi.org/10.1007/s10973-019-08813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08813-5

Keywords

Navigation