Skip to main content
Log in

Are there two different binding sites for ATP on the myosin head, or only one that switches between two conformers?

  • News and Views
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

References

  • Amrute-Nayak M, Lambeck K-A, Radocaj A et al (2014) ATP turnover by individual myosin molecules hints at two conformers of the myosin active site. Proc Natl Acad Sci USA 111:2536–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagshaw CR, Eccleston JF, Eckstein F et al (1974) The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine diphosphate dissociation. Biochem J 141:351–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barman TE, Travers F (1985) The rapid-flow-quench method in the study of fast reactions in biochemistry: extension to subzero conditions. Methods Biochem Anal 31:1–59

    Article  CAS  PubMed  Google Scholar 

  • Barman TE, Hillaire D, Travers F (1983) Evidence for the two-step binding of ATP to myosin subfragment 1 by the rapid-flow-quench method. Biochem J 209:617–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biosca JA, Barman TE, Travers F (1984) Transient kinetics of the binding of ATP to actomyosin subfragment 1: evidence that the dissociation of actomyosin subfragment 1 by ATP leads to a new conformation of subfragment 1. BioChemistry 23:2428–2436

    Article  CAS  PubMed  Google Scholar 

  • Chaussepied P, Mornet D, Barman TE et al (1986a) Alteration of the ATP hydrolysis and actin binding properties of thrombin-cut myosin subfragment 1. BioChemistry 25:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Chaussepied P, Mornet D, Kassab R (1986b) Identification of polyphosphate recognition sites communicating with actin sites on the skeletal myosin subfragment 1 heavy chain. BioChemistry 25:6426–6432

    Article  CAS  PubMed  Google Scholar 

  • Douzou P (1977a) Cryobiochemistry. Academic Press, London

    Google Scholar 

  • Douzou P (1977b) Enzymology at subzero temperatures. Adv Enzymol Relat Areas Mol Biol 45:157–272

    CAS  PubMed  Google Scholar 

  • Eccleston JF (1980) Fluorescence changes associated with the binding of ribose-5-triphosphate to myosin subfragment 1. Evidence for a second triphosphate binding site. FEBS Lett 113:55–57

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Namba K (2017) Structure of actomyosin rigour complex at 5.2 angstrom resolution and insights into the ATPase cycle mechanism. Nat Commun 8:13969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusi L, Huang Z, Irving M (2015) The conformation of myosin heads in relaxed skeletal muscle: implications for myosin-based regulation. Biophys J 109:783–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geeves MA, Holmes KC (2005) The molecular mechanism of muscle contraction. Adv Protein Chem 71:161–193

    Article  CAS  PubMed  Google Scholar 

  • Gulick AM, Bauer CB, Thoden JB, Rayment I (1997) X-ray structures of the MgADP, MgATPγS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. BioChemistry 36:11619–11628

    Article  CAS  PubMed  Google Scholar 

  • Gutfreund H (1995) Kinetics for the life sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Herrmann C, Sleep J, Chaussepied P et al (1993) A structural and kinetic study on myofibrils prevented from shortening by chemical cross-linking. BioChemistry 32:7255–7263

    Article  CAS  PubMed  Google Scholar 

  • Himmel DM, Gourinath S, Reshetnikova L, Shen Y, Szent-Gyorgyi AG, Cohen C (2002) Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor. Proc Natl Acad Sci USA 99:12645–12650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houadjeto M, Travers F, Barman T (1992) Ca(2+)-activated myofibrillar ATPase: transient kinetics and the titration of its active sites. BioChemistry 31:1564–1569

    Article  CAS  PubMed  Google Scholar 

  • Linari M, Brunello E, Reconditi M et al (2015) Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528:276–279

    Article  CAS  PubMed  Google Scholar 

  • Lionne C, Iorga B, Candau R, Travers F (2003) Why choose myofibrils to study muscle myosin ATPase? J Muscle Res Cell Motil 24:139–148

    Article  CAS  PubMed  Google Scholar 

  • Neves MAD, Slavkovic S, Churcher ZR, Johnson PE (2017) Salt-mediated two-site ligand binding by the cocaine-binding aptamer. Nucleic Acids Res 45:1041–1048

    PubMed  Google Scholar 

  • Rosenfeld SS, Taylor EW (1984) Reactions of 1-N6-ethenoadenosine nucleotides with myosin subfragment 1 and acto-subfragment 1 of skeletal and smooth muscle. J Biol Chem 259:11920–11929

    CAS  PubMed  Google Scholar 

  • Schaub MC, Watterson JG, Loth K, Foletta D (1983) The role of magnesium in binding of the nucleotide polyphosphate chain to the active site of myosin subfragment-1. Eur J Biochem 134:197–204

    Article  CAS  PubMed  Google Scholar 

  • Stehle R, Lionne C, Travers F, Barman T (2000) Kinetics of the initial steps of rabbit psoas myofibrillar ATPases studied by tryptophan and pyrene fluorescence stopped-flow and rapid flow-quench. Evidence that cross-bridge detachment is slower than ATP binding. BioChemistry 39:7508–7520

    Article  CAS  PubMed  Google Scholar 

  • Stewart MA, Franks-Skiba K, Chen S, Cooke R (2010) Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. Proc Natl Acad Sci USA 107:430–435

    Article  CAS  PubMed  Google Scholar 

  • Sweeney HL, Houdusse A (2010) Structural and functional insights into the Myosin motor mechanism. Annu Rev Biophys 39:539–557

    Article  CAS  PubMed  Google Scholar 

  • Tesi C, Travers F, Barman T (1988) Transient kinetics of the interaction of 1,N6-ethenoadenosine 5′-triphosphate with myosin subfragment 1 under normal and cryoenzymic conditions: a comparison with adenosine 5′-triphosphate. BioChemistry 27:4903–4908

    Article  CAS  PubMed  Google Scholar 

  • Tesi C, Bachouchi N, Barman T, Travers F (1989) Cryoenzymic studies on myosin: transient kinetic evidence for two types of head with different ATP binding properties. Biochimie 71:363–372

    Article  CAS  PubMed  Google Scholar 

  • Trayer IP, Keane AM, Murad Z et al (1991) The use of peptide mimetics to define the actin-binding sites on the head of the myosin molecule. In: Peptides as probes in muscle research. Springer, Johann Caspar Rüegg, London, pp 57–68

    Chapter  Google Scholar 

  • Woodhead JL, Zhao F-Q, Craig R (2013) Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications. Proc Natl Acad Sci USA 110:8561–8566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wray JS, Holmes KC (1981) X-ray diffraction studies of muscle. Annu Rev Physiol 43:553–565

    Article  CAS  PubMed  Google Scholar 

  • Wray JS, Vibert PJ, Cohen C (1975) Diversity of cross-bridge configurations in invertebrate muscles. Nature 257:561–564

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate our work to the memories of John Eccleston and Bernhard Brenner. We thank Dr. Gilles Labesse and Ms. Muriel Gelin (CBS, Montpellier) for helpful discussions on the myosin structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Lionne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesi, C., Barman, T. & Lionne, C. Are there two different binding sites for ATP on the myosin head, or only one that switches between two conformers?. J Muscle Res Cell Motil 38, 137–142 (2017). https://doi.org/10.1007/s10974-017-9480-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-017-9480-x

Navigation