Skip to main content

Advertisement

Log in

Landscape characteristics explain large-scale variation in demographic traits in forest grouse

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The effects of landscape composition on species and populations have become increasingly important due to large and rapid habitat changes worldwide. In particular, concern is raised for several forest-dwelling species such as capercaillie and black grouse, because their habitats are continuously changing and deteriorating from human development. Conservation of these species is linked to sustainable forest management that seeks to benefit multiple species, which demands knowledge about demographic rates in relation to forest composition and structure. We related the spatial variation in adult density and chick production of capercaillie and black grouse to landscape characteristics from 13 areas within the boreal forest of Norway. Linear mixed effects models showed that black grouse and capercaillie had similar associations to landscape characteristics. Adult density of both species was positively related to the proportion of old forest (>80 years), but only if the area had large proportions of mid to high productive forests. Chick production was negatively related to the proportion of old forest, but positively to habitat diversity and more so for black grouse compared to capercaillie. However, the result for chick production suggest that other forest types also are important, and that forest grouse needs a variety of habitats during their life history stages. Management that seeks to simultaneously conserve populations of black grouse and capercaillie needs to ensure a matrix of various forest types. A special focus must be on the critical life history of local populations to successfully preserve viable populations, for black grouse and capercaillie this implies protection of old and mid to high productive forest while keeping a heterogeneous landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angelstam P (2004) Habitat thresholds and effects of forest landscape change on the distribution and abundance of black grouse and capercaillie. Ecol Bull 51:173–187

    Google Scholar 

  • Aune-Lundberg L, Strand G-H (2010) CORINE land cover classes examination of the content of CLC classes in Norway. Norwegian Forest and Landscape Institute Report 05/10

  • Baines D, Andrew M (2003) Marking of deer fences to reduce frequency of collisions by woodland grouse. Biol Conserv 110:169–176

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011a) lme4: linear mixed-effects models using S4 classes R package version 0999375-41. Available from http://lme4.r-forge.r-project.org/. Accessed Nov 2013

  • Bates D, Maechler M, Bolker B (2011b) mlmRev: examples from multilevel modelling software review R package version 099875-1

  • Bjørneraas K, Herfindal I, Solberg EJ, Sæther B-E, van Moorter B, Rolandsen CM (2012) Habitat quality influences population distribution individual space use and functional responses in habitat selection by a large herbivore. Oecologia 168:231–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Bollmann K, Graf RF, Suter W (2011) Quantitative predictions for patch occupancy of capercaillie in fragmented habitats. Ecography 34:276–286

    Article  Google Scholar 

  • Braunisch V, Suchant R (2007) A model for evaluating the ‘habitat potential’ of a landscape for capercaillie Tetrao urogallus: a tool for conservation planning. Wildl Biol 13:21–33

    Article  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, Oxford

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York

    Google Scholar 

  • Caizergues A, Rätti O, Helle P, Rotelli L, Ellison L, Rasplus JY (2003) Population genetic structure of male black grouse (Tetrao tetrix L) in fragmented vs continuous landscapes. Mol Biol 12:2297–2305

    Google Scholar 

  • Conover MR (2007) Predator-prey dynamics: the role of olfaction. CRC Press, Boca Raton

    Book  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Freckleton RP (2011) Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behav Ecol Sociobiol 65:91–101

    Article  Google Scholar 

  • George TL, Zack S (2001) Spatial and temporal considerations in restoring habitat for wildlife. Restor Ecol 9:272–279

    Article  Google Scholar 

  • Gjerde I, Wegge P (1989) Spacing pattern habitat use and survival of capercaillie in fragmented winter habitat. Ornis Scand 20:219–225

    Article  Google Scholar 

  • Gjertsen AK (2007) Accuracy of forest mapping based on Landsat TM data and a kNN-based method. Remote Sens Environ 110:420–430

    Article  Google Scholar 

  • Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: capercaillie in the Swiss Alps. Landscape Ecol 20:703–717

    Article  Google Scholar 

  • Graf RF, Bollmann K, Sachot S, Suter W, Bugmann H (2006) On the generality of habitat distribution models: a case study with capercaillie in three Swiss regions. Ecography 29:319–328

    Article  Google Scholar 

  • Graf RF, Bollmann K, Bugmann H, Suter W (2007) Forest and landscape structure variables as predictors for capercaillie occurrence. J Wildl Manag 71:356–365

    Article  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Article  Google Scholar 

  • Gregersen F, Gregersen H (2008) Old bilberry forest increases likelihood of Capercaillie Tetrao urogallus lek occupancy in Southern Norway. Ornis Norvegica 31:105–115

    Google Scholar 

  • Gregersen F, Gregersen H (2009) Ongoing population decline and range contraction in Norwegian forest grouse. Ornis Norvegica 32:179–189

    Google Scholar 

  • Güthlin D, Storch I, Küchenhoff H (2013) Landscape variables associated with relative abundance of generalist mesopredators. Landscape Ecol. doi:10.1007/s10980-013-9911-z

    Google Scholar 

  • Helle P, Jokimäki J, Lindén H (1990) Habitat selection of the male Capercaillie in northern Finland: a study based on radiotelemetry. Suom Riista 36:72–81

    Google Scholar 

  • Herfindal I, Haanes H, Solberg EJ, Røed KH, Høgda KA, Sæther B (2013) Moose body mass variation revisited: disentangling effects of environmental conditions and genetics. Oecologia. doi:10.1007/s00442-013-2783-8

    PubMed  Google Scholar 

  • IUCN (2010) IUCN red list of threatened species version 20103. Available from http://www.iucnredlist.org. Accessed Sept 2010

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Kålås JA, Viken Å, Henriksen S, Skjelseth S (eds) (2010) The 2010 norwegian red list for species. Norwegian Biodiversity Information Centre Norway, Trondheim

    Google Scholar 

  • Kangas A, Kurki S (2000) Predicting the future of Capercaillie (Tetrao urogallus) in Finland. Ecol Model 134:73–87

    Article  Google Scholar 

  • Klaus S (1991) Effects of forestry on grouse populations: case studies from the Thuringian and Bohemian forests Central Europe. Ornis Scand 22:218–223

    Article  Google Scholar 

  • Kurki S, Nikula A, Helle P, Lindén H (2000) Landscape fragmentation and forest composition effects on grouse breeding success in boreal forests. Ecology 81:1985–1997

    Google Scholar 

  • Kvasnes MAJ, Storaas T, Pedersen HC, Bjørk S, Nilsen EB (2010) Spatial dynamics of Norwegian tetraonid populations. Ecol Res 25:367–374

    Article  Google Scholar 

  • Lande US, Herfindal I, Finne MH, Kastdalen L (2010) Use of hunters in wildlife surveys: does hunter and forest grouse habitat selection coincide? Eur J Wildl Res 56:107–115

    Article  Google Scholar 

  • Ludwig T, Storch I, Graf RF (2009) Historic landscape change and habitat loss: the case of black grouse in Lower Saxony Germany. Landscape Ecol 24:533–546

    Article  Google Scholar 

  • Ludwig GX, Alatalo RV, Helle P, Siitari H (2010) Individual and environmental determinants of early brood survival in black grouse Tetrao tetrix. Wildl Biol 16:367–378

    Article  Google Scholar 

  • Miettinen J, Helle P, Nikula A (2005) Lek area characteristics of capercaillie (Tetrao urogallus) in eastern Finland as analysed from satellite-based forest inventory data. Scand J For Res 20:358–369

    Article  Google Scholar 

  • Miettinen J, Helle P, Nikula A, Niemelä P (2008) Large-scale landscape composition and capercaillie (Tetrao urogallus) density in Finland. Ann Zoo Fenn 45:161–173

    Article  Google Scholar 

  • Miettinen J, Helle P, Nikula A, Niemelä P (2010) Capercaillie (Tetrao urogallus) habitat characteristics in north boreal Finland. Silva Fenn 44:235–254

    Google Scholar 

  • Moen A (1999) National atlas of Norway: vegetation. Norwegian Mapping Authority, Hønefoss

    Google Scholar 

  • National Forest Inventory (2008) Resultatkontroll skogbruk/miljø. Rapport 2007 Oppdragsrapport fra Skog og landskap 14

  • Newton I (1998) Population limitation in birds. Academic Press, San Diego

    Google Scholar 

  • Oliver T, Roy DR, Hill JK, Brereton T, Thomas CD (2010) Heterogeneous landscapes promote population stability. Ecol Lett 13:473–484

    Article  PubMed  Google Scholar 

  • Paillet Y, Berges L, Hjalten J, Odor P, Avon C, Bernhardt-Romermann M, Bijlsma RJ, De Bruyn L, Fuhr M, Grandin U, Kanka R, Lundin L, Luque S, Magura T, Matesanz S, Meszaros I, Sebastia MT, Schmidt W, Standovar T, Tothmeresz B, Uotila A, Valladeres F, Vellak K, Virtanen R (2010) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–112

    Article  PubMed  Google Scholar 

  • Pellikka J, Kuikka S, Lindén H, Varis O (2005) The role of game management on wildlife populations: uncertainty analysis of expert knowledge. Eur J Wildl Res 51:48–59

    Article  Google Scholar 

  • Puschmann O (2005) Nasjonalt referansesystem for landskap Beskrivelse av Norges 45 landskapsregioner. NIJOS rapport 10

  • R Development Core Team (2011) R: a language and environment for statistical computing R foundation for statistical computing, Vienna. Available from http://www.R-project.org/. Accessed Sept 2011

  • Ranta E, Lindström J, Linden H (1995) Synchrony in tetraonid population-dynamics. J Anim Ecol 64:767–776

    Article  Google Scholar 

  • Rolstad J, Wegge P (1987) Distribution and size of capercaillie leks in relation to old forest fragmentation. Oecologia 72:389–394

    Article  Google Scholar 

  • Rolstad J, Wegge P (1989) Capercaillie populations and modern forestry: a case for landscape ecological studies. Finn Game Res 46:43–52

    Google Scholar 

  • Rolstad J, Wegge P, Larsen BB (1988) Spacing and habitat use of capercaillie during summer. Can J Zool 66:670–679

    Article  Google Scholar 

  • Rolstad J, Rolstad E, Wegge P (2007) Capercaillie Tetrao urogallus lek formation in young forest. Wildl Biol 13:59–67

    Article  Google Scholar 

  • Rolstad J, Wegge P, Sivkov AV, Hjeljord O, Storaunet KO (2009) Size and spacing of grouse leks: comparing capercaillie (Tetrao urogallus) and black grouse (Tetrao tetrix) in two contrasting Eurasian boreal forest landscapes. Can J Zool 87:1032–1043

    Article  Google Scholar 

  • Sæther B, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity (2010) Global biodiversity outlook 3. Montréal

  • Seiskari P (1962) On the winter ecology of capercaillie Tetrao urogallus and black grouse Lyrurus tetrix in Finland. Finn Game Res 22:1–119

    Google Scholar 

  • Selås V (2001) Autumn population size of capercaillie in relation to bilberry production and weather: an analysis of Norwegian game reports. Wildl Biol 7:17–25

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Singer JD (1998) Using SAS PROC MIXED to fit multilevel models hierarchical models and individual growth models. J Educ Behav Stat 24:323–355

    Google Scholar 

  • Sirkiä S, Pelikka J, Lindén H (2010) Balancing the needs of capercaillie (Tetrao urogallus) and moose (Alces alces) in large-scale human land use. Eur J Wildl Res 56:249–260

    Article  Google Scholar 

  • Sirkiä S, Helle P, Linden H, Nikula A, Norrdahl K, Suorsa P, Valkeajärvi P (2011) Persistence of Capercaillie (Tetrao urogallus) lekking areas depends on forest cover and fine-grain fragmentation of boreal forest landscapes. Ornis Fennica 88:14–29

    Google Scholar 

  • Solvang H, Pedersen HC, Storaas T, Hagen BR (2009) Rapport for skogsfugltakseringen 2005–2008 Grouse Management Project (2006–2011). Oppdragsrapport 1

  • Spidsø TK, Hjeljord O, Dokk JG (1997) Seasonal mortality of black grouse Tetrao tetrix during a year with little snow. Wildli Biol 3:205–209

    Google Scholar 

  • Storch I (1995) Annual home ranges and spacing patterns of capercaillie in central Europe. J Wildli Manag 59:392–400

    Article  Google Scholar 

  • Storch I (2007) Grouse status survey and conservation action plan 2006–2010. Gland Switzerland: IUCN and Fordingbridge, UK: World Pheasant Association. Available from https://portals.iucn.org/library/efiles/edocs/2007-034.pdf. Accessed Nov 2013

  • Storch I, Woitke E, Krieger S (2005) Landscape-scale edge effects in predation risk in forest-farmland mosaic in central Europe. Landscape Ecol 20:927–940

    Article  Google Scholar 

  • Summers RW, Proctor R, Thorton M, Avey G (2004a) Habitat selection and diet of the Capercaillie Tetrao urogallus in Abernathy Forest Strathspey Scotland. Bird Study 51:58–68

    Article  Google Scholar 

  • Summers RW, Green RE, Proctor R, Dugan D, Lambie D, Moncrieff R, Moss R, Baines D (2004b) An experimental study of the effects of predation on the breeding productivity of capercaillie and black grouse. J Appl Ecol 41:513–525

    Article  Google Scholar 

  • Swenson JE, Angelstam P (1993) Habitat separation by sympatric forest grouse in Fennoscandia in relation to forest succession. Can J Zool 71:1303–1310

    Article  Google Scholar 

  • Thiel D, Unger C, Kéry M, Jenni L (2007) Selection of night roosts in winter by capercaillie Tetrao urogallus in Central Europe. Wildl Biol 13:73–86

    Article  Google Scholar 

  • Wallgren M, Bergström R, Danell K, Skarpe C (2009) Wildlife community patterns in relation to landscape structure and environmental gradients in a Swedish boreal ecosystem. Wildl Biol 15:310–318

    Article  Google Scholar 

  • Wang G, Hobbs NT, Boone RB, Illius AW, Gordon IJ, Gross JE, Hamlin KL (2006) Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87:95–102

    Article  PubMed  Google Scholar 

  • Wegge P, Kastdalen L (2007) Pattern and causes of natural mortality of capercaillie Tetrao urogallus chicks in a fragmented boreal forest. Ann Zoo Fenn 44:141–151

    Google Scholar 

  • Wegge P, Kastdalen L (2008) Habitat and diet of young grouse broods: resource partitioning between Capercaillie (Tetrao urogallus) and Black Grouse (Tetrao tetrix) in boreal forests. J Ornithol 149:237–244

    Article  Google Scholar 

  • Wegge P, Rolstad J (2011) Clearcutting forestry and Eurasian boreal forest grouse: long-term monitoring of sympatric capercaillie Tetrao urogallus and black grouse T tetrix reveals unexpected effects on their population performances. For Ecol Manag 261:1520–1529

    Article  Google Scholar 

  • Wegge P, Storaas T (1990) Nest loss in capercaillie and black grouse in relation to the small rodent cycle in south east Norway. Oecologia 82:527–530

    Article  Google Scholar 

  • Wegge P, Larsen BB, Gjerde I, Kastdalen L, Rolstad J, Storaas T (1987) Natural mortality and predation of adult capercaillie in southeast Norway. In: Lovel T, Hudson P (eds) Proceedings of the IV international symposium on Grouse Lam Germany, pp 49–56

  • Wegge P, Olstad T, Gregersen H, Hjeljord O, Sivkov AV (2005) Capercaillie broods in pristine boreal forest in northwestern Russia: the importance of insects and cover in habitat selection. Can J Zool 83:1547–1555

    Article  Google Scholar 

  • Willebrand T (1988) Demography and ecology of a Black Grouse (Lyrurus tetrix L.) population. PhD thesis, University of Uppsala, Sweden

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank all volunteer personnel involved in the data retrieval, led by Håkon Solvang and Hans Christian Pedersen. We also thank Vidar Grøtan for helpful comments to the analyses and Ingerid Julie Hagen, Dr. Jochen Krauss and two anonymous referees for valuable comments on previous version of the manuscript. Data was retrieved as part of the Grouse Management Project (2006–2011) and funded by the Norwegian research council, Hedmark University College and Norwegian institute for nature research (NINA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unni S. Lande.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lande, U.S., Herfindal, I., Willebrand, T. et al. Landscape characteristics explain large-scale variation in demographic traits in forest grouse. Landscape Ecol 29, 127–139 (2014). https://doi.org/10.1007/s10980-013-9960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-013-9960-3

Keywords

Navigation