Skip to main content

Advertisement

Log in

Cross-scale effects of land use on the functional composition of herbivorous insect communities

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Insect herbivores comprise the majority of macroinvertebrate communities of temperate grasslands and act as drivers for important ecosystem functions. Landscape- and local-level land use may alter species pools and dispersal possibilities and act as local environmental filters, affecting insect trait composition.

Objectives

While environmental filtering by local land use has repeatedly been shown to affect insect community assembly, less is known about the role of land-use intensity at the landscape level. We studied the relative importance of both local- and landscape-level land use in shaping the functional diversity and composition as well as the functional β-diversity among herbivore communities.

Methods

We used abundance data of three main herbivorous insect groups from grasslands across three regions in Germany and combined it with data on nine morphometric traits related to functions such as dispersal abilities to analyse the effects of different land-use components on community assembly.

Results

Land use at both the local and landscape level affected the functional composition of insect communities. Some trait combinations were particularly sensitive to changes in management intensity, whereas others reacted strongly to the availability of suitable habitats in the surrounding area. Simultaneously, functional diversity was not affected by land use at either spatial level. However, increasing local management intensity reduced functional β-diversity.

Conclusions

We conclude that both local- and landscape-level land use shape the functional composition of insect communities. Our results highlight the importance of considering land use across multiple spatial scales to understand its effects on the functional integrity of herbivore communities in temperate grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aubin I, Venier L, Pearce J, Moretti M (2013) Can a trait-based multi-taxa approach improve our assessment of forest management impact on biodiversity? Biodivers Conserv 22:2957–2975

    Article  Google Scholar 

  • Barton PS, Gibb H, Manning AD, Lindenmayer DB, Cunningham SA (2011) Morphological traits as predictors of diet and microhabitat use in a diverse beetle assemblage. Biol J Linn Soc 102:301–310

    Article  Google Scholar 

  • Bauer T, Kredler M (1993) Morphology of the compound eyes as an indicator of life-style in carabid beetles. Can J Zool 71:799–810

    Article  Google Scholar 

  • Birkhofer K, Gossner MM, Diekötter T, Drees C, Ferlian O, Maraun M, Scheu S, Weisser WW, Wolters V, Wurst S, Zaitsev AS, Smith HG (2017) Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J Anim Ecol 86:511–520

    Article  PubMed  Google Scholar 

  • Blüthgen N, Dormann CF, Prati D, Klaus VH, Kleinebecker T, Hölzel N, Alt F, Boch S, Gockel S, Hemp A, Müller J, Nieschulze J, Renner SC, Schöning I, Schumacher U, Socher SA, Wells K, Birkhofer K, Buscot F, Oelmann Y, Rothenwöhrer C, Scherber C, Tscharntke T, Weiner CN, Fischer M, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220

    Article  Google Scholar 

  • Börschig C, Klein A-M, von Wehrden H, Krauss J (2013) Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic Appl Ecol 14:547–554

    Article  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540

    Article  Google Scholar 

  • Botta-Dukát Z, Czúcz B (2016) Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods Ecol Evol 7:114–126

    Article  Google Scholar 

  • Brook AJ, Woodcock BA, Sinka M, Vanbergen AJ (2008) Experimental verification of suction sampler capture efficiency in grasslands of differing vegetation height and structure. J Appl Ecol 45:1357–1363

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • Burrows M, Sutton GP (2008) The effect of leg length on jumping performance of short- and long-legged leafhopper insects. J Exp Biol 211:1317–1325

    Article  CAS  PubMed  Google Scholar 

  • Carmona CP, de Bello F, Mason NWH, Lepš J (2016) Traits without borders: integrating functional diversity across scales. Trends Ecol Evol 31:382–394

    Article  PubMed  Google Scholar 

  • Chapman RF (2013) Simpson SJ, Douglas AE (eds) The insects: structure and function, 5th edn. Cambridge University Press, Cambridge

  • Compton SG (2002) Sailing with the wind: dispersal by small flying insects. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology. Blackwell Science, Oxford, pp 113–133

    Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Di Giulio M, Edwards PJ, Meister E (2001) Enhancing insect diversity in agricultural grasslands: the roles of management and landscape structure. J Appl Ecol 38:310–319

    Article  Google Scholar 

  • Dolédec S, Chessel D, ter Braak CJF, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166

    Article  Google Scholar 

  • Dray S, Dufour A-B, Thioulouse J (2018) Analysis of ecological data: exploratory and euclidean methods in environmental sciences. R package version 1.7-11

  • Ferrier S, Manion G, Elith J, Richardson K (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13:252–264

    Article  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485

    Article  Google Scholar 

  • Fountain-Jones NM, Baker SC, Jordan GJ (2015) Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecol Entomol 40:1–13

    Article  Google Scholar 

  • Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, de Jong H, Simons NK, Klein A-M, Krauss J, Maier G, Scherber C, Steckel J, Rothenwöhrer C, Steffan-Dewenter I, Weiner CN, Weisser W, Werner M, Tscharntke T, Westphal C (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner T, Hill J (2006) A comparison of three sampling techniques used to estimate the population density and assemblage diversity of Orthoptera. J Orthoptera Res 15:45–51

    Article  Google Scholar 

  • Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K, Renner SC, Sikorski J, Wubet T, Arndt H, Baumgartner V, Blaser S, Blüthgen N, Börschig C, Buscot F, Diekötter T, Jorge LR, Jung K, Keyel AC, Klein A-M, Klemmer S, Krauss J, Lange M, Müller J, Overmann J, Pašalić E, Penone C, Perović DJ, Purschke O, Schall P, Socher SA, Sonnemann I, Tschapka M, Tscharntke T, Türke M, Venter PC, Weiner CN, Werner M, Wolters V, Wurst S, Westphal C, Fischer M, Weisser WW, Allan E (2016) Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540:266–269

    Article  CAS  PubMed  Google Scholar 

  • Gotelli NJ, McCabe DJ (2002) Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83:2091–2096

    Article  Google Scholar 

  • Holzinger WE, Kammerlander I, Nickel H (2003) The Auchenorrhyncha of Central Europe. Fulgoromorpha, Cicadomorpha excl. Cicadellidae. Brill, Leiden 

    Google Scholar 

  • Ibanez S, Lavorel S, Puijalon S, Moretti M (2013) Herbivory mediated by coupling between biomechanical traits of plants and grasshoppers. Funct Ecol 27:479–489

    Article  Google Scholar 

  • Kaspari M, Weiser MD (1999) The size–grain hypothesis and interspecific scaling in ants. Funct Ecol 13:530–538

    Article  Google Scholar 

  • Kleyer M, Dray S, de Bello F, Lepš J, Pakeman RJ, Strauss B, Thuiller W, Lavorel S (2012) Assessing species and community functional responses to environmental gradients: which multivariate methods? J Veg Sci 23:805–821

    Article  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.0-12

  • Laureto LMO, Cianciaruso MV, Samia DSM (2015) Functional diversity: an overview of its history and applicability. Nat Conserv 13:112–116

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Mangels J, Fiedler K, Schneider FD, Blüthgen N (2017) Diversity and trait composition of moths respond to land-use intensification in grasslands: generalists replace specialists. Biodivers Conserv 26:3385–3405

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Mori AS, Isbell F, Seidl R (2018) β-diversity, community assembly, and ecosystem functioning. Trends Ecol Evol 33:549–564

    Article  PubMed  Google Scholar 

  • Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Community ecology package. R package version 2.4-6

  • Papanikolaou AD, Kühn I, Frenzel M, Kuhlmann M, Poschlod P, Potts SG, Roberts SPM, Schweiger O (2017) Wild bee and floral diversity co-vary in response to the direct and indirect impacts of land use. Ecosphere 8:e02008

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Perović D, Gámez-Virués S, Börschig C, Klein A-M, Krauss J, Steckel J, Rothenwöhrer C, Erasmi S, Tscharntke T, Westphal C (2015) Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J Appl Ecol 52:505–513

    Article  Google Scholar 

  • Petchey OL, Evans KL, Fishburn IS, Gaston KJ (2007) Low functional diversity and no redundancy in British avian assemblages. J Anim Ecol 76:977–985

    Article  PubMed  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, EISPACK authors, Heisterkamp S, Van Willigen B, R Core Team (2017) Linear and nonlinear mixed effects models. R package version 3.1-131

  • Rader R, Bartomeus I, Tylianakis JM, Laliberté E, van Kleunen M (2014) The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. Divers Distrib 20:908–917

    Article  Google Scholar 

  • Ribera I, Dolédec S, Downie IS, Foster GN (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82:1112–1129

    Article  Google Scholar 

  • Ricotta C, Burrascano S (2008) Beta diversity for functional ecology. Preslia 80:61–71

    Google Scholar 

  • Rose DJW (1972) Dispersal and quality in populations of Cicadulina species (Cicadellidae). J Anim Ecol 41:589–609

    Article  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sannwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the Year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  • Schuh RT, Slater JA (1995) True bugs of the world (Hemiptera: Heteroptera). Cornell University Press, Ithaca

    Google Scholar 

  • Simons NK, Weisser WW, Gossner MM (2016) Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land-use intensity gradient. Ecology 97:754–764

    PubMed  Google Scholar 

  • Steckel J, Westphal C, Peters MK, Bellach M, Rothenwoehrer C, Erasmi S, Scherber C, Tscharntke T, Steffan-Dewenter I (2014) Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol Conserv 172:56–64

    Article  Google Scholar 

  • Temme AJAM, Verburg PH (2011) Mapping and modelling of changes in agricultural intensity in Europe. Agric Ecosyst Environ 140:46–56

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Weiher E, Freund D, Bunton T, Stefanski A, Lee T, Bentivenga S (2011) Advances, challenges and a developing synthesis of ecological community assembly theory. Philos Trans R Soc Lond B 366:2403–2413

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewer for the valuable and constructive comments on our paper. We are thankful to S. Radford for linguistic editing. We thank R. Achtziger, R. Heckmann, G. Köhler, G. Kunz, C. Morkel, F. Schmolke and O. Wiche for insect species identification, numerous students for field and laboratory assistance and D. Ambarli and S. Seibold for data preparation. We thank the Bavarian State Collection of Zoology, the Senckenberg Museum Dresden, A. Hilpert, G. Kunz and C. Pitteloud for providing specimens for morphometric measurements and S. Berendt, L. Höck, M. Pfitzer and E. Sackey for their help in taking those measurements. We are thankful to the managers of the three Exploratories, K. Wells, S. Renner, K. Reichel-Jung, S. Gockel, K. Wiesner, K. Lorenzen, A. Hemp and M. Gorke for their work in maintaining the plot and project infrastructure; S. Pfeiffer, M. Gleisberg and C. Fischer and for providing support through the central office; J. Nieschulze and M. Owonibi for managing the central data base; and M. Fischer, E. Linsenmair, D. Hessenmöller, D. Prati, I. Schöning, F. Buscot, E.-D. Schulze, and the late E. Kalko for their role in setting up the Biodiversity Exploratories project. This study was funded by the DFG Priority Program 1374 ‘Infrastructure-Biodiversity-Exploratories’ and the SNF (310030E−173542/1). Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen and Brandenburg (according to §72 BbgNatSchG).

Author information

Authors and Affiliations

Authors

Contributions

FN, LP and MMG conceived and developed the ideas for the manuscript; FN analysed the data and wrote the first draft; LP and MMG commented on all versions of the manuscript; NB, MNC, MMG, FN, NKS, JS, WWW and CW collected and provided data. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Felix Neff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 242 kb)

Supplementary material 2 (PDF 5705 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neff, F., Blüthgen, N., Chisté, M.N. et al. Cross-scale effects of land use on the functional composition of herbivorous insect communities. Landscape Ecol 34, 2001–2015 (2019). https://doi.org/10.1007/s10980-019-00872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00872-1

Keywords

Navigation