Skip to main content
Log in

Influence of Heat Treatment on the Microstructure and Physicomechanical Properties of Titanium Alloys of the Ti−Nb−Mo system

  • Published:
Materials Science Aims and scope

We present the results of investigation of the structure and properties of four titanium alloys of the Ti–Nb–Mo system after their subsolidus annealing and annealing with quenching from 870°С. The obtained results indicate that heat treatment strongly affects the phase composition, microstructure, microhardness, Young’s modulus, and elastic properties of investigated specimens. The annealed alloys are two-phase α′ + β alloys and their Young’s modulus is close to Young’s modulus of pure titanium (87–100 GРа). Quenching leads to the formation of the α′′ -phase and the amount of β -phase becomes insignificant. As a result, the microhardness somewhat decreases and Young’s modulus becomes ∼ 1.5 times lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. T. Rae, “The toxicity of metals used in orthopedic prostheses. An experimental study using cultured human synovial fibroblasts,” J. Bone Joint Surg. Br., 63, No. 3, 435–440 (1981).

    Article  Google Scholar 

  2. F. Sun, Y. L. Hao, S. Nowak, T. Gloriant, P. Laheurte, and F. Prima, “A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at.%) alloys,” J. Mech. Behav. Biomed. Mater., 4, No. 8, 1864–1872 (2011).

    Article  CAS  Google Scholar 

  3. Y. W. Chaia, H. Y. Kima, H. Hosodab, and S. Miyazaki, “Interfacial defects in Ti–Nb shape memory alloys,” Acta Mater., 56, No. 13, 3088–3097 (2008).

    Article  Google Scholar 

  4. W. F. Ho, C. P. Ju, and J. H. C. Lin, “Structure and properties of cast binary Ti–Mo alloys,” Biomaterials, 20, No. 22, 2115–2122 (1999).

    Article  CAS  Google Scholar 

  5. D. J. Lin, C. C. Chuang, J. H. Chern, J. W. Lee, C. P. Ju, and H. S. Yin, “Bone formation at the surface of low modulus Ti–7.5 Mo implants in rabbit femur,” Biomaterials, 28, No. 16, 2582–2589 (2007).

    Article  CAS  Google Scholar 

  6. N. T. C. Oliveira and A. C. Guastaldi, “Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications,” Acta Biomater., 5, No. 1, 399–405 (2009).

    Article  CAS  Google Scholar 

  7. H. Y. Kim, S. Hashimoto, J. I. Kim, H. Hosoda, and S. Miyazaki, “Mechanical properties and shape memory behavior of Ti–Nb alloys,” Mater. Trans., 45, No. 7, 2443–2448 (2004).

    Article  CAS  Google Scholar 

  8. L. C. Zhang, T. Zhou, S. P. Alpay, and M. Aindow, “Origin of pseudoelastic behavior in Ti–Mo-based alloys,” Appl. Phys. Lett., 87, No. 24, 241909 (2005).

    Article  Google Scholar 

  9. L. H. de Almeida, I. N. Bastos, I. D. Santos, A. J. B. Dutra, C. A. Nunes, and S. B. Gabriel, “Corrosion resistance of aged Ti–Mo–Nb alloys for biomedical applications,” J. Alloys Comp., 615, 666–669 (2014).

    Article  Google Scholar 

  10. C. Zhang, H. Tian, C. Hao, J. Zhao, Q. Wang, E. Liu, and C. Dong, “First-principles calculations of elastic moduli of Ti–Mo–Nb alloys using a cluster-plus-glue-atom model for stable solid solutions,” J. Mater. Sci., 48, No. 8, 3138–3146 (2013).

    Article  CAS  Google Scholar 

  11. Y. Al-Zain, Y. Sato, H. Y. Kim, H. Hosoda, T. H. Nam, and S. Miyazaki, “Room temperature aging behavior of Ti–Nb–Mo-based superelastic alloys,” Acta Mater., 60, No. 5, 2437–2447 (2012).

    Article  CAS  Google Scholar 

  12. D. C. Zhang, Y. F. Mao, Y. L. Li, J. J. Li, M. Yuan, and J. G. Lin, “Effect of ternary alloying elements on microstructure and superelasticity of Ti–Nb alloys,” Mater. Sci. Eng., A, 559, 706–710 (2013).

    Article  CAS  Google Scholar 

  13. V. N. Eremenko and L. A. Tret’yachenko, Ternary Systems of Titanium with Transition Metals from Groups IV–VI [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  14. V. Cheverikin, G. Ghosh, A. Makudera, and J.-C. Tedenac, “Mo–Nb–Ti ternary phase diagram evaluation,” in: G. Effenberg (editor), Materials Science International, Stuttgart (2015), Document ID 10.21856.1.1; http://www.msi-eureka.com/previewhtml/10.21856.1.1/Mo-Nb-Ti_Ternary_Phase_Diagram_Evaluation/.

  15. N. N. Sobolev, V. I. Levanov, О. P. Elyutin, and V. S. Mikheev, “Construction of the diagram of melting for the Ti–V–Nb–Mo system by the simplex lattice method,” Izv. Akad. Nauk SSSR. Metally, No. 2, 217–221 (1974).

  16. I. I. Kornilov and R. S. Polyakova, “Diagrams of state for the ternary titanium–niobium–molybdenum system,” Zh. Neorg. Khim., 3, No. 4, 879–888 (1958).

    CAS  Google Scholar 

  17. O. M. Myslyvchenko, A. A. Bondar, V. F. Gorban, Yu. F. Lugovskyi, V. B. Sobolev, and I. B. Tikhonova, “Structure and physicomechanical properties of cast titanium alloys of the Ti−Nb−Mo system,” Fiz.-Khim. Mekh. Mater., 56, No. 2, 81–87 (2020); English translation: Mater. Sci., 56, No. 2, 224–231 (2020).

  18. Yu. A. Kocherzhinskii, E. A. Shishkin, and V. I. Vasilenko, DTA apparatus with a thermocouple sensor of up to 2200°С,” in: N. V. Ageev and O. S. Ivanov (editors), Diagrams of State of Metallic Systems [in Russian], Nauka, Moscow (1971), pp. 245–249.

  19. V. A. Kuz’menko, Sonic and Ultrasonic Oscillations in the Dynamic Testing of Materials [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1963).

    Google Scholar 

  20. S. A. Firstov, V. F. Gorban, and É. P. Pechkovskii, “Determination of the ultimate values of hardness, elastic strains, and corresponding stresses for materials by the method of automatic indentation,” Materialovedenie, No. 8, 15–21 (2008).

  21. H. S. Kim, W. Y. Kim, and S. H. Lim, “Microstructure and elastic modulus of Ti–Nb–Si ternary alloys for biomedical applications,” Scr. Mater., 54, No. 5, 887–891 (2006).

    Article  CAS  Google Scholar 

  22. R. Davis, H. M. Flower, and D. R. F. West, “Martensitic transformations in Ti–Mo alloys,” J. Mater. Sci., 14, No. 3, 712–722 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to О. М. Myslyvchenko.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 56, No. 4, pp. 44–52, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myslyvchenko, О.М., Bondar, А.А., Tsyganenko, N.І. et al. Influence of Heat Treatment on the Microstructure and Physicomechanical Properties of Titanium Alloys of the Ti−Nb−Mo system. Mater Sci 56, 481–490 (2021). https://doi.org/10.1007/s11003-021-00454-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-021-00454-0

Keywords

Navigation