Skip to main content
Log in

Periods of the multiple Berglund–Hübsch–Krawitz mirrors

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the multiple Calabi–Yau mirror phenomenon which appears in Berglund–Hübsch–Krawitz (BHK) mirror symmetry. We show that for any pair of Calabi–Yau orbifolds that are BHK mirrors of a loop–chain-type pair of Calabi–Yau threefolds in the same weighted projective space the periods of the holomorphic nonvanishing form coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. With a slight abuse of notation, we use here h for the Hodge number of the orbifold, which we used before for the original manifold \(X_M\).

  2. See also [19] for related discussion.

  3. Below \(A_i\) are defined according to Eqs. (2.3) and (2.4).

  4. This was calculated using Mathematica, the algorithm is based on the definition of the polynomials \(W ^0_M\) of chain and loop types given above. First, we find all the cases for these two types separately, then the intersection of the two sets is found.

References

  1. Gepner, D.: Exactly solvable string compactifications on manifolds of SU (N) holonomy. Phys. Lett. B 199, 380 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  2. Greene, B.R., Plesser, M.R.: Duality in Calabi-Yau moduli space. Nucl. Phys. B 338, 15–37 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry, pp. 101–142. AMS Clay Mathematical Institute, New York (2003)

    MATH  Google Scholar 

  4. Candelas, P., de la Ossa, X.: Moduli space of Calabi-Yau manifolds. Nucl. Phys. B 355, 455–481 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Strominger, A.: Special geometry. Commun. Math. Phys. 133, 163–180 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  6. Kreuzer, M., Skarke, H.: On the classification of quasi-homogeneous functions. Commun. Math. Phys. 150, 137 (1992). arXiv:hep-th/9202039

    Article  ADS  Google Scholar 

  7. Berglund, P., Hübsch, T.: A generalized construction of mirror manifolds. AMS/IP Stud. Adv. Math. 9, 327–346 (1998). arXiv:hep-th/9201014

    Article  Google Scholar 

  8. Krawitz, M.: “FJRW Rings and Landau-Ginzburg Mirror Symmetry,”, PhD dissertation (2010) https://deepblue.lib.umich.edu/bitstream/handle/2027.42/77910/mkrawitz_1.pdf;sequence=1

  9. Krawitz, M.: “FJRW rings and Landau-Ginzburg Mirror Symmetry,” (2009), arXiv:0906.0796 [math.AG]

  10. Chiodo, A., Ruan, Y.: “LG/CY correspondence: the state space isomorphism,” Advances in Mathematics 227 (2011) 2157–2188, arXiv:0908.0908 [math.AG]

  11. Kelly, T.L.: “Berglund-Hübsch-Krawitz mirrors via Shioda maps,” Adv. Theor. Math. Phys. 17, no.6, 1425-1449 (2013), arXiv:1304.3417 [math.AG]

  12. Shoemaker, M.: “Birationality of Berglund-Huebsch-Krawitz Mirrors,” Commun. Math. Phys. 331, no.2, 417-429 (2014) arXiv:1209.5016 [math.AG]

  13. Clarke, P.: A proof of the birationality of certain BHK-mirrors. Complex Manifolds 1, 45–51 (2014)

    Article  MathSciNet  Google Scholar 

  14. Clader, E., Ruan, Y.: Mirror Symmetry Constructions. In: Clader E., Ruan Y. (eds) B-Model Gromov-Witten Theory. Trends in Mathematics. Birkhäuser, Cham (2018) arXiv:1412.1268 [math.AG]

  15. Favero, D., Kelly, T.T.: “Derivid Categories of BHK Mirrors,” Advances in Mathematics Volume 352, 20 August 2019, Pages 943-980 arXiv: 1602.0587 [math. AG]

  16. Belakovskiy, M., Belavin, A.: “Coincidences between Calabi-Yau manifolds of Berglund-Hubsch type and Batyrev polytope, Theor. Math. Phys., 205(2), 1439-1455 (2020) arXiv:2005.06008

  17. Gährs, S.: Picard-Fuchs equations of special one-parameter families of invertible polynomials, https://arxiv.org/pdf/1109.3462.pdf

  18. Lerche, W., Vafa, C., Warner, N.P.: Chiral rings in N=2 superconformal theories. Nucl. Phys. B 324, 427–474 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  19. Belavin, A., Eremin, B.: “On the equivalence of Batyrev and BHK Mirror symmetry constructions,” Nuclear Physics B, Volume 961, December 2020, 115271 arXiv:2010.07687

  20. Kreuzer, M., Schmmrigk, R., Skarke, S.: Abelian Landau-Ginzburg Orbifolds and mirror symmetry. Nucl. Phys. B 372, 61 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kreuzer, M.: The mirror map for invertible LG models. Phys. Lett. B 328, 312–318 (1994). arXiv:hep-th/9402114

    Article  ADS  MathSciNet  Google Scholar 

  22. Aleshkin, K., Belavin, A.: “GLSM for Calabi-Yau Manifolds of Berglund-Hubsch Type,” JETP Letters. 110(11), 711-714 (2019) arXiv:1911.11678 [hep-th]

Download references

Acknowledgements

The work of A. Belavin has been supported by the Russian Science Foundation under the grant 18-12-00439. The authors thank the reviewers for their careful reading and very helpful comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Belavin.

Additional information

In memory of Boris Dubrovin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 1 Here, \(\{k_i\}\) are weights arising simultaneously in loop and chain types, with the corresponding exponents \(\{A_i\}^C\) and \(\{A_i\}^L\) in (2.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belavin, A., Belavin, V. & Koshevoy, G. Periods of the multiple Berglund–Hübsch–Krawitz mirrors. Lett Math Phys 111, 93 (2021). https://doi.org/10.1007/s11005-021-01439-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01439-5

Keywords

Mathematics Subject Classification

Navigation