Skip to main content
Log in

Protection against peroxynitrite-induced DNA damage by mesalamine: implications for anti-inflammation and anti-cancer activity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mesalamine (5-aminosalicylic acid, 5-ASA) is known to be the first-line medication for treatment of patients with ulcerative colitis. Studies have demonstrated that ulcerative colitis patients treated with 5-ASA have an overall decrease in the risk of developing colorectal carcinoma. However, the mechanisms underlying 5-ASA-mediated anti-inflammatory and anti-cancer effects are yet to be elucidated. Because peroxynitrite has been critically involved in inflammatory stress and carcinogenesis, this study was undertaken to investigate the effects of 5-ASA in peroxynitrite-induced DNA strand breaks, an important event leading to peroxynitrite-elicited cytotoxicity. Incubation of φX-174 plasmid DNA with the peroxynitrite generator 3-morpholinosydnonimine (SIN-1) led to the formation of both single- and double-stranded DNA breaks in a concentration-dependent manner. The presence of 5-ASA at 0.1 and 1.0 mM was found to significantly inhibit SIN-1-induced DNA strand breaks in a concentration-dependent manner. The consumption of oxygen induced by SIN-1 was found to not be affected by 5-ASA at 0.1–50 mM, indicating that 5-ASA at these concentrations is not involved in the auto-oxidation of SIN-1 to form peroxynitrite. It is observed that 5-ASA at 0.1–1 mM showed considerable inhibition of peroxynitrite-mediated luminol chemiluminescence in a dose-dependent fashion, suggesting that 5-ASA is able to directly scavenge the peroxynitrite. Electron paramagnetic resonance (EPR) spectroscopy in combination with spin-trapping experiments, using 5,5-dimethylpyrroline-N-oxide (DMPO) as spin trap resulting in the formation of DMPO-hydroxyl radical adduct from peroxynitrite, and 5-ASA only at higher concentration (1 mM) inhibited the hydroxyl radical adduct while shifting EPR spectra, indicating that 5-ASA at higher concentrations may generate a more stable free radical species rather than acting purely as a hydroxyl radical scavenger. Taken together, these studies demonstrate for the first time that 5-ASA can potently inhibit peroxynitrite-mediated DNA strand breakage, scavenge peroxynitrite, and affect peroxynitrite-mediated radical formation, which may be responsible, at least partially, for its anti-inflammatory and anti-cancer effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMPO:

5,5-Dimethylpyrroline-N-oxide

EPR:

Electron paramagnetic resonance

SIN-1:

3-Morpholinosydnonimine

5-ASA:

5-Aminosalicylic acid (mesalamine)

PBS:

Phosphate-buffered saline

NaHCO3 :

Sodium bicarbonate

References

  1. Choi CH, Kim YH, Kim YS, Ye BD, Lee KM, Lee BI, Jung SA, Kim WH, Lee H (2012) Guidelines for the management of ulcerative colitis. Korean J Gastroenterol 59:118–140

    Article  PubMed  Google Scholar 

  2. Merchea A, Wolff BG, Dozois EJ, Abdelsattar ZM, Harmsen WS, Larson DW (2012) Clinical features and oncologic outcomes in patients with rectal cancer and ulcerative colitis: a single-institution experience. Dis Colon Rectum 55:881–885

    Article  PubMed  Google Scholar 

  3. Kulaylat MN, Dayton MT (2010) Ulcerative colitis and cancer. J Surg Oncol 101:706–712

    Article  PubMed  Google Scholar 

  4. Jemal A, Center MM, DeSantis C, Ward EM (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19:1893–1907

    Article  PubMed  Google Scholar 

  5. Fitzpatrick FA (2001) Inflammation, carcinogenesis and cancer. Int Immunopharmacol 1:1651–1667

    Article  PubMed  CAS  Google Scholar 

  6. Shacter E, Weitzman SA (2002) Chronic inflammation and cancer. Oncology (Williston Park) 16:217–226, 229 discussion 230–212

    Google Scholar 

  7. Tang J, Sharif O, Pai C, Silverman AL (2010) Mesalamine protects against colorectal cancer in inflammatory bowel disease. Dig Dis Sci 55:1696–1703

    Article  PubMed  CAS  Google Scholar 

  8. Lyakhovich A, Gasche C (2010) Systematic review: molecular chemoprevention of colorectal malignancy by mesalazine. Aliment Pharmacol Ther 31:202–209

    PubMed  CAS  Google Scholar 

  9. Velayos FS, Terdiman JP, Walsh JM (2005) Effect of 5-aminosalicylate use on colorectal cancer and dysplasia risk: a systematic review and metaanalysis of observational studies. Am J Gastroenterol 100:1345–1353

    Article  PubMed  CAS  Google Scholar 

  10. Lyakhovich A, Gasche C (2010) Systematic review: molecular chemoprevention of colorectal malignancy by mesalazine. Aliment Pharmacol Ther 31:202–209

    PubMed  CAS  Google Scholar 

  11. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169

    PubMed  CAS  Google Scholar 

  12. Deliconstantinos G, Villiotou V, Stavrides JC, Salemes N, Gogas J (1995) Nitric oxide and peroxynitrite production by human erythrocytes: a causative factor of toxic anemia in breast cancer patients. Anticancer Res 15:1435–1446

    PubMed  CAS  Google Scholar 

  13. Fraszczak J, Trad M, Janikashvili N, Cathelin D, Lakomy D, Granci V, Morizot A, Audia S, Micheau O, Lagrost L, Katsanis E, Solary E, Larmonier N, Bonnotte B (2010) Peroxynitrite-dependent killing of cancer cells and presentation of released tumor antigens by activated dendritic cells. J Immunol 184:1876–1884

    Article  PubMed  CAS  Google Scholar 

  14. Rachmilewitz D, Stamler JS, Karmeli F, Mullins ME, Singel DJ, Loscalzo J, Xavier RJ, Podolsky DK (1993) Peroxynitrite-induced rat colitis—a new model of colonic inflammation. Gastroenterology 105:1681–1688

    PubMed  CAS  Google Scholar 

  15. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  16. Szabo C (2003) Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 140–141:105–112

    Article  PubMed  Google Scholar 

  17. Szabo C, Ohshima H (1997) DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1:373–385

    Article  PubMed  CAS  Google Scholar 

  18. Cao Z, Li Y (2004) Potent inhibition of peroxynitrite-induced DNA strand breakage by ethanol: possible implications for ethanol-mediated cardiovascular protection. Pharmacol Res 50:13–19

    Article  PubMed  CAS  Google Scholar 

  19. Shirai K, Okada T, Konishi K, Murata H, Akashi S, Sugawara F, Watanabe N, Arai T (2012) Bicarbonate plays a critical role in the generation of cytotoxicity during SIN-1 decomposition in culture medium. Oxid Med Cell Longev 2012:326731

    Article  PubMed  Google Scholar 

  20. Li Y, Trush MA (1993) DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Carcinogenesis 14:1303–1311

    Article  PubMed  CAS  Google Scholar 

  21. Cai L, Klein JB, Kang YJ (2000) Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J Biol Chem 275:38957–38960

    Article  PubMed  CAS  Google Scholar 

  22. Kim SY, Lee JH, Yang ES, Kil IS, Park JW (2003) Human sensitive to apoptosis gene protein inhibits peroxynitrite-induced DNA damage. Biochem Biophys Res Commun 301:671–674

    Article  PubMed  CAS  Google Scholar 

  23. Pascual C, Reinhart K (1999) Effect of antioxidants on induction time of luminol luminescence elicited by 3-morpholinosydnonimine (SIN-1). Luminescence 14:83–89

    Article  PubMed  CAS  Google Scholar 

  24. Radi RA, Rubbo H, Prodanov E (1989) Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions. Biochim Biophys Acta 994:89–93

    Article  PubMed  CAS  Google Scholar 

  25. Thorpe GH, Kricka LJ (1986) Enhanced chemiluminescent reactions catalyzed by horseradish peroxidase. Methods Enzymol 133:331–353

    Article  PubMed  CAS  Google Scholar 

  26. Radi R, Cosgrove TP, Beckman JS, Freeman BA (1993) Peroxynitrite-induced luminol chemiluminescence. Biochem J 290(Pt 1):51–57

    PubMed  CAS  Google Scholar 

  27. Szabo C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    Article  PubMed  CAS  Google Scholar 

  28. Frejaville C, Karoui H, Tuccio B, Le Moigne F, Culcasi M, Pietri S, Lauricella R, Tordo P (1995) 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. J Med Chem 38:258–265

    Article  PubMed  CAS  Google Scholar 

  29. Pieper GM, Felix CC, Kalyanaraman B, Turk M, Roza AM (1995) Detection by ESR of DMPO hydroxyl adduct formation from islets of langerhans. Free Radic Biol Med 19:219–225

    Article  PubMed  CAS  Google Scholar 

  30. Stolze K, Udilova N, Nohl H (2000) Spin trapping of lipid radicals with DEPMPO-derived spin traps: detection of superoxide, alkyl and alkoxyl radicals in aqueous and lipid phase. Free Radic Biol Med 29:1005–1014

    Article  PubMed  CAS  Google Scholar 

  31. Jia Z, Zhu H, Vitto MJ, Misra BR, Li Y, Misra HP (2009) Alpha-lipoic acid potently inhibits peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation: implications for the neuroprotective effects of alpha-lipoic acid. Mol Cell Biochem 323:131–138

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Zhu, Zhenquan Jia or Yunbo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, P.M., Li, J.Z., Dou, X. et al. Protection against peroxynitrite-induced DNA damage by mesalamine: implications for anti-inflammation and anti-cancer activity. Mol Cell Biochem 378, 291–298 (2013). https://doi.org/10.1007/s11010-013-1620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1620-z

Keywords

Navigation