Skip to main content
Log in

Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr kinase family, and is associated with different types of cancer and neurodegenerative diseases. Vanillin is a natural compound, a primary component of the extract of the vanilla bean which possesses varieties of pharmacological features including anti-oxidant, anti-inflammatory, anti-bacterial and anti-tumor. Here, we have investigated the binding mechanism and affinity of vanillin to the CAMKIV which is being considered as a potential drug target for cancer and neurodegenerative diseases. We found that vanillin binds strongly to the active site cavity of CAMKIV and stabilized by a large number of non-covalent interactions. We explored the utility of vanillin as anti-cancer agent and found that it inhibits the proliferation of human hepatocyte carcinoma (HepG2) and neuroblastoma (SH-SY5Y) cells in a dose-dependent manner. Furthermore, vanillin treatment resulted into the significant reduction in the mitochondrial membrane depolarization and ROS production that eventually leads to apoptosis in HepG2 and SH-SY5Y cancer cells. These findings may offer a novel therapeutic approach by targeting the CAMKIV using natural product and its derivative with a minimal side effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohmstede CA, Jensen KF, Sahyoun NE (1989) Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. J Biol Chem 264:5866–5875

    CAS  PubMed  Google Scholar 

  2. Naz H, Islam A, Ahmad F, Hassan MI (2016) Calcium/calmodulin-dependent protein kinase IV: a multifunctional enzyme and potential therapeutic target. Prog Biophys Mol Biol 121:54–65

    Article  CAS  PubMed  Google Scholar 

  3. Fukushima H, Maeda R, Suzuki R, Suzuki A, Nomoto M, Toyoda H, Wu LJ, Xu H, Zhao MG, Ueda K et al (2008) Upregulation of calcium/calmodulin-dependent protein kinase IV improves memory formation and rescues memory loss with aging. J Neurosci 28:9910–9919

    Article  CAS  PubMed  Google Scholar 

  4. Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bland MM, Monroe RS, Ohmstede CA (1994) The cDNA sequence and characterization of the Ca2+/calmodulin-dependent protein kinase-Gr from human brain and thymus. Gene 142:191–197

    Article  CAS  PubMed  Google Scholar 

  6. Jang MK, Goo YH, Sohn YC, Kim YS, Lee SK, Kang H, Cheong J, Lee JW (2001) Ca2+/calmodulin-dependent protein kinase IV stimulates nuclear factor-kappa B transactivation via phosphorylation of the p65 subunit. J Biol Chem 276:20005–20010

    Article  CAS  PubMed  Google Scholar 

  7. Wang G, Zhang H, Wang L, Wang Y, Huang H, Sun F (2015) Ca(2+)/Calmodulin-dependent protein kinase IV promotes interplay of proteins in chromatoid body of male germ cells. Sci Rep 5:12126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Impey S, Fong AL, Wang Y, Cardinaux JR, Fass DM, Obrietan K, Wayman GA, Storm DR, Soderling TR, Goodman RH (2002) Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. Neuron 34:235–244

    Article  CAS  PubMed  Google Scholar 

  9. Sano Y, Shobe JL, Zhou M, Huang S, Shuman T, Cai DJ, Golshani P, Kamata M, Silva AJ (2014) CREB regulates memory allocation in the insular cortex. Curr Biol 24:2833–2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50:211–221

    Article  CAS  PubMed  Google Scholar 

  11. Nomura M, Ueno A, Saga K, Fukuzawa M, Kaneda Y (2014) Accumulation of cytosolic calcium induces necroptotic cell death in human neuroblastoma. Cancer Res 74:1056–1066

    Article  CAS  PubMed  Google Scholar 

  12. Szobi A, Rajtik T, Carnicka S, Ravingerova T, Adameova A (2014) Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: effects on programmed necrotic and apoptotic cell death. Mol Cell Biochem 388:269–276

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez-Mora OG, Lahair MM, Evans MJ, Kovacs CJ, Allison RR, Sibata CH, White KS, McCubrey JA, Franklin RA (2006) Inhibition of the CaM-kinases augments cell death in response to oxygen radicals and oxygen radical inducing cancer therapies in MCF-7 human breast cancer cells. Cancer Biol Ther 5:1022–1030

    Article  CAS  PubMed  Google Scholar 

  14. Williams CL, Phelps SH, Porter RA (1996) Expression of Ca2+/calmodulin-dependent protein kinase types II and IV, and reduced DNA synthesis due to the Ca2+/calmodulin-dependent protein kinase inhibitor KN-62 (1-[N, O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenyl piperazine) in small cell lung carcinoma. Biochem Pharmacol 51:707–715

    Article  CAS  PubMed  Google Scholar 

  15. Tamura N, Tai Y, Sugimoto K, Kobayashi R, Konishi R, Nishioka M, Masaki T, Nagahata S, Tokuda M (2000) Enhanced expression and activation of Ca(2+)/calmodulin-dependent protein kinase IV in hepatocellular carcinoma. Cancer 89:1910–1916

    Article  CAS  PubMed  Google Scholar 

  16. Ichinose K, Rauen T, Juang YT, Kis-Toth K, Mizui M, Koga T, Tsokos GC (2011) Cutting edge: calcium/calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis. J Immunol 187:5500–5504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCullough LD, Tarabishy S, Liu L, Benashski S, Xu Y, Ribar T, Means A, Li J (2013) Inhibition of calcium/calmodulin-dependent protein kinase kinase beta and calcium/calmodulin-dependent protein kinase IV is detrimental in cerebral ischemia. Stroke 44:2559–2566

    Article  CAS  PubMed  Google Scholar 

  18. Cohen P (2002) Protein kinases–the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  CAS  PubMed  Google Scholar 

  19. Hoda N, Naz H, Jameel E, Shandilya A, Dey S, Hassan MI, Ahmad F, Jayaram B (2016) Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: fluorescence and molecular dynamics simulation studies. J Biomol Struct Dyn 34:572–584

    Article  CAS  PubMed  Google Scholar 

  20. Naz F, Anjum F, Islam A, Ahmad F, Hassan MI (2013) Microtubule affinity-regulating kinase 4: structure, function, and regulation. Cell Biochem Biophys 67:485–499

    Article  CAS  PubMed  Google Scholar 

  21. Naz, F., Sami, N., Naqvi, A.T., Islam, A., Ahmad, F., and Imtaiyaz Hassan, M. (2016). Evaluation of human microtubule affinity-regulating kinase 4 inhibitors: fluorescence binding studies, enzyme, and cell assays. J Biomol Struct Dyn, 1-10

  22. Naz F, Shahbaaz M, Bisetty K, Islam A, Ahmad F, Hassan MI (2015) Designing new kinase inhibitor derivatives as therapeutics against common complex diseases: structural basis of microtubule affinity-regulating kinase 4 (MARK4) Inhibition. OMICS 19:700–711

    Article  CAS  PubMed  Google Scholar 

  23. Ho K, Yazan LS, Ismail N, Ismail M (2009) Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol 33:155–160

    Article  CAS  PubMed  Google Scholar 

  24. Lirdprapamongkol K, Sakurai H, Suzuki S, Koizumi K, Prangsaengtong O, Viriyaroj A, Ruchirawat S, Svasti J, Saiki I (2010) Vanillin enhances TRAIL-induced apoptosis in cancer cells through inhibition of NF-kappaB activation. In Vivo 24:501–506

    CAS  PubMed  Google Scholar 

  25. King AA, Shaughnessy DT, Mure K, Leszczynska J, Ward WO, Umbach DM, Xu Z, Ducharme D, Taylor JA, Demarini DM et al (2007) Antimutagenicity of cinnamaldehyde and vanillin in human cells: global gene expression and possible role of DNA damage and repair. Mutat Res 616:60–69

    Article  CAS  PubMed  Google Scholar 

  26. Lirdprapamongkol K, Kramb JP, Suthiphongchai T, Surarit R, Srisomsap C, Dannhardt G, Svasti J (2009) Vanillin suppresses metastatic potential of human cancer cells through PI3 K inhibition and decreases angiogenesis in vivo. J Agric Food Chem 57:3055–3063

    Article  CAS  PubMed  Google Scholar 

  27. Cheng WY, Hsiang CY, Bau DT, Chen JC, Shen WS, Li CC, Lo HY, Wu SL, Chiang SY, Ho TY (2007) Microarray analysis of vanillin-regulated gene expression profile in human hepatocarcinoma cells. Pharmacol Res 56:474–482

    Article  CAS  PubMed  Google Scholar 

  28. Dhanalakshmi C, Manivasagam T, Nataraj J, Justin Thenmozhi A, Essa MM (2015) Neurosupportive role of vanillin, a natural phenolic compound, on rotenone induced neurotoxicity in SH-SY5Y neuroblastoma cells. Evid Based Complement Alternat Med 2015:626028

    Article  PubMed  PubMed Central  Google Scholar 

  29. Naz H, Shahbaaz M, Bisetty K, Islam A, Ahmad F, Hassan I (2016) Effect of pH on the structure, function and stability of human calcium/calmodulin-dependent protein kinase IV: A combined spectroscopic and MD simulation studies. Biochem Cell Biol 94:221–228

    Article  CAS  PubMed  Google Scholar 

  30. Naz H, Shahbaaz M, Haque MA, Bisetty K, Islam A, Ahmad F, Hassan MI (2017) Urea-induced denaturation of human calcium/calmodulin-dependent protein kinase IV: a combined spectroscopic and MD simulation studies. J Biomol Struct Dyn 35:463–475

    Article  CAS  PubMed  Google Scholar 

  31. Tanchuk VY, Tanin VO, Vovk AI, Poda G (2016) A new, improved hybrid scoring function for molecular docking and scoring based on autodock and autodock vina. Chem Biol Drug Des 87:618–625

    Article  CAS  PubMed  Google Scholar 

  32. Zhang S, Kumar K, Jiang X, Wallqvist A, Reifman J (2008) DOVIS: an implementation for high-throughput virtual screening using AutoDock. BMC Bioinformatics 9:126

    Article  PubMed  PubMed Central  Google Scholar 

  33. Naz H, Jameel E, Hoda N, Shandilya A, Khan P, Islam A, Ahmad F, Jayaram B, Hassan MI (2016) Structure guided design of potential inhibitors of human calcium-calmodulin dependent protein kinase IV containing pyrimidine scaffold. Bioorg Med Chem Lett 26:782–788

    Article  CAS  PubMed  Google Scholar 

  34. Khan FI, Aamir M, Wei DQ, Ahmad F, Hassan MI (2017) Molecular mechanism of Ras-related protein Rab-5A and effect of mutations in the catalytically active phosphate-binding loop. J Biomol Struct Dyn 35:105–118

    Article  CAS  PubMed  Google Scholar 

  35. Kumari S, Idrees D, Mishra CB, Prakash A, Ahmad F, Hassan MI, Tiwari M (2016) Design and synthesis of a novel class of carbonic anhydrase-IX inhibitor 1-(3-(phenyl/4-fluorophenyl)-7-imino-3H-[1,2,3]triazolo[4,5d]pyrimidin 6(7H)yl)urea. J Mol Graph Model 64:101–109

    Article  CAS  PubMed  Google Scholar 

  36. Wang YQ, Zhang HM, Zhang GC, Tao WH, Fei ZH, Liu ZT (2007) Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin. J Pharm Biomed Anal 43:1869–1875

    Article  CAS  PubMed  Google Scholar 

  37. Jameel E, Naz H, Khan P, Tarique M, Kumar J, Mumtazuddin S, Ahamad S, Islam A, Ahmad F, Hoda N et al (2017) Design, synthesis, and biological evaluation of pyrimidine derivatives as potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. Chem Biol Drug Des 89:741–754

    Article  CAS  PubMed  Google Scholar 

  38. Matveeva EG, Morisseau C, Goodrow MH, Mullin C, Hammock BD (2009) Tryptophan fluorescence quenching by enzyme inhibitors as a tool for enzyme active site structure investigation: epoxide hydrolase. Curr Pharm Biotechnol 10:589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ino T, Nishioka T, Miyoshi H (2003) Characterization of inhibitor binding sites of mitochondrial complex I using fluorescent inhibitor. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1605:15–20

    Article  CAS  Google Scholar 

  40. Pierce MM, Raman C, Nall BT (1999) Isothermal titration calorimetry of protein–protein interactions. Methods 19:213–221

    Article  CAS  PubMed  Google Scholar 

  41. Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  42. Kumar S, Kain V, Sitasawad SL (2012) High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways. Biochim Biophys Acta 1820:907–920

    Article  CAS  PubMed  Google Scholar 

  43. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870

    Article  CAS  PubMed  Google Scholar 

  44. Aneja B, Irfan M, Hassan MI, Prakash A, Yadava U, Daniliuc CG, Zafaryab M, Rizvi MM, Azam A, Abid M (2016) Monocyclic beta-lactam and unexpected oxazinone formation: synthesis, crystal structure, docking studies and antibacterial evaluation. J Enzyme Inhib Med Chem 31:834–852

    CAS  PubMed  Google Scholar 

  45. Hassan MI (2016) Editorial. Recent advances in the structure-based drug design and discovery. Curr Top Med Chem 16:899–900

    Article  CAS  PubMed  Google Scholar 

  46. Hassan MI, Kumar V, Singh TP, Yadav S (2007) Structural model of human PSA: a target for prostate cancer therapy. Chem Biol Drug Des 70:261–267

    Article  CAS  PubMed  Google Scholar 

  47. Hassan MI, Kumar V, Somvanshi RK, Dey S, Singh TP, Yadav S (2007) Structure-guided design of peptidic ligand for human prostate specific antigen. J Pept Sci 13:849–855

    Article  CAS  PubMed  Google Scholar 

  48. Kumari S, Mishra CB, Idrees D, Prakash A, Yadav R, Hassan MI, Tiwari M (2017) Design, synthesis, in silico and biological evaluation of novel 2-(4-(4-substituted piperazin-1-yl)benzylidene)hydrazine carboxamides. Mol Divers 21:163–174

    Article  CAS  PubMed  Google Scholar 

  49. Thakur PK, Kumar J, Ray D, Anjum F, Hassan MI (2013) Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. J Nat Sci Biol Med 4:51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Naz H, Khan P, Tarique M, Rahman S, Meena A, Ahamad S, Luqman S, Islam A, Ahmad F, Hassan MI (2017) Binding studies and biological evaluation of beta-carotene as a potential inhibitor of human calcium/calmodulin-dependent protein kinase IV. Int J Biol Macromol 96:161–170

    Article  CAS  PubMed  Google Scholar 

  51. Takai N, Miyazaki T, Nishida M, Nasu K, Miyakawa I (2002) Ca(2 +)/calmodulin-dependent protein kinase IV expression in epithelial ovarian cancer. Cancer Lett 183:185–193

    Article  CAS  PubMed  Google Scholar 

  52. Srinual S, Chanvorachote P, Pongrakhananon V (2017) Suppression of cancer stem-like phenotypes in NCI-H460 lung cancer cells by vanillin through an Akt-dependent pathway. Int J Oncol 50:1341–1351

    Article  PubMed  Google Scholar 

  53. Lin F, Marcelo KL, Rajapakshe K, Coarfa C, Dean A, Wilganowski N, Robinson H, Sevick E, Bissig KD, Goldie LC et al (2015) The camKK2/camKIV relay is an essential regulator of hepatic cancer. Hepatology 62:505–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kamat JP, Ghosh A, Devasagayam TP (2000) Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol Cell Biochem 209:47–53

    Article  CAS  PubMed  Google Scholar 

  55. Liang JA, Wu SL, Lo HY, Hsiang CY, Ho TY (2009) Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor-kappaB signaling pathway in human hepatocellular carcinoma cells. Mol Pharmacol 75:151–157

    Article  CAS  PubMed  Google Scholar 

  56. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  57. Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parkash J, Felty Q, Roy D (2006) Estrogen exerts a spatial and temporal influence on reactive oxygen species generation that precedes calcium uptake in high-capacity mitochondria: implications for rapid nongenomic signaling of cell growth. Biochemistry 45:2872–2881

    Article  CAS  PubMed  Google Scholar 

  60. Wartenberg M, Budde P, De Marees M, Grunheck F, Tsang SY, Huang Y, Chen ZY, Hescheler J, Sauer H (2003) Inhibition of tumor-induced angiogenesis and matrix-metalloproteinase expression in confrontation cultures of embryoid bodies and tumor spheroids by plant ingredients used in traditional chinese medicine. Lab Invest 83:87–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Indian Council of Medical Research (Grant No. BIC/12(01)/2015). HN and PK thank to the ICMR for the fellowship. We sincerely acknowledge Harvard University-plasmid providing facility for providing the CAMK4 gene. Authors thank to the Department of Science and Technology, Government of India for the FIST support (No. SR/FST/LSI-541/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Imtaiyaz Hassan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest with the current work or its publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, H., Tarique, M., Khan, P. et al. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells. Mol Cell Biochem 438, 35–45 (2018). https://doi.org/10.1007/s11010-017-3111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3111-0

Keywords

Navigation