Skip to main content
Log in

Heat shock proteins and their expression in primary murine cardiac cell populations during ischemia and reperfusion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A tight quality control system over protein folding, turnover and synthesis, involving molecular chaperones and co-chaperones, maintains the balance of cardiac proteins. Various cardiac pathologies, including myocardial infarction, increase stresses and post-translational modifications favoring misfolding due to an overwhelmed quality control system. The toxic nature of accumulated misfolded proteins further worsens the condition. The important molecular chaperones which act as quality control proteins are involved in protecting the heart, these include heat shock protein70 (HSP70) and HSP90. Here, we review the emerging roles of heat shock proteins in the maintenance of cardiac cell populations in experimental models of ischemia/reperfusion (I/R) injury. Furthermore, we discuss the expression of HSP70 and HSP90 with therapeutic and diagnostic considerations. Although there is only a partial understanding of these important HSPs in I/R injury, there is an immense therapeutic potential of modulating these HSPs to counteract the imbalance between misfolding and endogenous protein quality control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Willis MS, Patterson C (2010) Hold me tight: role of the heat shock protein family of chaperones in cardiac disease. Circulation 122:1740–1751. https://doi.org/10.1161/CIRCULATIONAHA.110.942250

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ranek MJ, Stachowski MJ, Kirk JA, Willis MS (2018) The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B. https://doi.org/10.1098/rstb.2016.0530

    Article  Google Scholar 

  3. Hofmann C, Katus HA, Doroudgar S (2019) Protein misfolding in cardiac disease. Circulation 139:2085–2088. https://doi.org/10.1161/CIRCULATIONAHA.118.037417

    Article  PubMed  Google Scholar 

  4. McLendon PM, Robbins J (2015) Proteotoxicity and cardiac dysfunction. Circ Res 116:1863–1882. https://doi.org/10.1161/CIRCRESAHA.116.305372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rujano MA, Bosveld F, Salomons FA, Dijk F, van Waarde MA, van der Want JJ, de Vos RA, Brunt ER, Sibon OC, Kampinga HH (2006) Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol 4:e417. https://doi.org/10.1371/journal.pbio.0040417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774. https://doi.org/10.1038/35008096

    Article  CAS  PubMed  Google Scholar 

  7. Taipale M, Tucker G, Peng J, Krykbaeva I, Lin ZY, Larsen B, Choi H, Berger B, Gingras AC, Lindquist S (2014) A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158:434–448. https://doi.org/10.1016/j.cell.2014.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bustamante CJ, Kaiser CM, Maillard RA, Goldman DH, Wilson CA (2014) Mechanisms of cellular proteostasis: insights from single-molecule approaches. Ann Rev Biophys 43:119–140. https://doi.org/10.1146/annurev-biophys-051013-022811

    Article  CAS  Google Scholar 

  9. Patterson C, Höhfeld J (2007) Molecular chaperones and the ubiquitin–proteasome system. In: Mayer R, Ciechanover A, Rechsteiner M (eds) Protein degradation series. Wiley, New Jersey, pp 1–30

    Google Scholar 

  10. Genest O, Wickner S, Doyle SM (2019) Hsp90 and Hsp70 chaperones: collaborators in protein remodeling. J Biol Chem 294:2109–2120. https://doi.org/10.1074/jbc.REV118.002806

    Article  CAS  PubMed  Google Scholar 

  11. Wu B, Hunt C, Morimoto R (1985) Structure and expression of the human gene encoding major heat shock protein HSP70. Mol Cell Biol 5:330–341. https://doi.org/10.1128/mcb.5.2.330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684. https://doi.org/10.1007/s00018-004-4464-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma SK, De los Rios P, Christen P, Lustig A, Goloubinoff P (2010) The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol 6:914–920. https://doi.org/10.1038/nchembio.455

    Article  CAS  PubMed  Google Scholar 

  14. Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360. https://doi.org/10.1038/nrm.2017.20

    Article  CAS  PubMed  Google Scholar 

  15. Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44. https://doi.org/10.1007/s10254-003-0021-1

    Article  CAS  PubMed  Google Scholar 

  16. Ostling P, Bjork JK, Roos-Mattjus P, Mezger V, Sistonen L (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282:7077–7086. https://doi.org/10.1074/jbc.M607556200

    Article  CAS  PubMed  Google Scholar 

  17. Wu C, Dong S, Li Y (2015) Effects of miRNA-455 on cardiac hypertrophy induced by pressure overload. Int J Mol Med 35:893–900. https://doi.org/10.3892/ijmm.2015.2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang C, Tang Y, Li Y, Xie L, Zhuang W, Liu J, Gong J (2017) Unfolded protein response plays a critical role in heart damage after myocardial ischemia/reperfusion in rats. PLoS ONE 12:e0179042. https://doi.org/10.1371/journal.pone.0179042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu H, Ye M, Yang J, Ding J (2016) Endoplasmic reticulum stress-induced apoptosis: a possible role in myocardial ischemia-reperfusion injury. Int J Cardiol 208:65–66. https://doi.org/10.1016/j.ijcard.2016.01.119

    Article  PubMed  Google Scholar 

  20. Doroudgar S, Thuerauf DJ, Marcinko MC, Belmont PJ, Glembotski CC (2009) Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response. J Biol Chem 284:29735–29745. https://doi.org/10.1074/jbc.M109.018036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishizawa J, Nakai A, Higashi T, Tanabe M, Nomoto S, Matsuda K, Ban T, Nagata K (1996) Reperfusion causes significant activation of heat shock transcription factor 1 in ischemic rat heart. Circulation 94:2185–2192. https://doi.org/10.1161/01.cir.94.9.2185

    Article  CAS  PubMed  Google Scholar 

  22. Nishizawa J, Nakai A, Matsuda K, Komeda M, Ban T, Nagata K (1999) Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 99:934–941. https://doi.org/10.1161/01.cir.99.7.934

    Article  CAS  PubMed  Google Scholar 

  23. Chang J, Knowlton AA, Xu F, Wasser JS (2001) Activation of the heat shock response: relationship to energy metabolites. A (31)P NMR study in rat hearts. Am J Physiol Heart Circ Physiol 280:H426–H433. https://doi.org/10.1152/ajpheart.2001.280.1.H426

    Article  CAS  PubMed  Google Scholar 

  24. Li Z, Song Y, Xing R, Yu H, Zhang Y, Li Z, Gao W (2013) Heat shock protein 70 acts as a potential biomarker for early diagnosis of heart failure. PLoS ONE 8:e67964. https://doi.org/10.1371/journal.pone.0067964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knowlton AA, Brecher P, Apstein CS (1991) Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest 87:139–147. https://doi.org/10.1172/JCI114963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Currie RW, Tanguay RM, Kingma JG Jr (1993) Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation 87:963–971. https://doi.org/10.1161/01.cir.87.3.963

    Article  CAS  PubMed  Google Scholar 

  27. Hutter MM, Sievers RE, Barbosa V, Wolfe CL (1994) Heat-shock protein induction in rat hearts. A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation 89:355–360. https://doi.org/10.1161/01.cir.89.1.355

    Article  CAS  PubMed  Google Scholar 

  28. Trost SU, Omens JH, Karlon WJ, Meyer M, Mestril R, Covell JW, Dillmann WH (1998) Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J Clin Invest 101:855–862. https://doi.org/10.1172/JCI265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Jong PR, Schadenberg AW, Jansen NJ, Prakken BJ (2009) Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects. Cell Stress Chaperones 14:117–131. https://doi.org/10.1007/s12192-008-0066-9

    Article  CAS  PubMed  Google Scholar 

  30. Bernardo BC, Weeks KL, Patterson NL, McMullen JR (2016) HSP70: therapeutic potential in acute and chronic cardiac disease settings. Future Med Chem 8:2177–2183. https://doi.org/10.4155/fmc-2016-0192

    Article  CAS  PubMed  Google Scholar 

  31. Mandal K, Torsney E, Poloniecki J, Camm AJ, Xu Q, Jahangiri M (2005) Association of high intracellular, but not serum, heat shock protein 70 with postoperative atrial fibrillation. Ann Thorac Surg 79:865–871. https://doi.org/10.1016/j.athoracsur.2004.08.018discussion 871

    Article  PubMed  Google Scholar 

  32. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273. https://doi.org/10.1083/jcb.200104079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Datta R, Bansal T, Rana S, Datta K, Datta Chaudhuri R, Chawla-Sarkar M, Sarkar S (2017) Myocyte-derived Hsp90 modulates collagen upregulation via biphasic activation of STAT-3 in fibroblasts during cardiac hypertrophy. Mol Cell Biol. https://doi.org/10.1128/MCB.00611-16

    Article  PubMed  PubMed Central  Google Scholar 

  34. Garcia R, Merino D, Gomez JM, Nistal JF, Hurle MA, Cortajarena AL, Villar AV (2016) Extracellular heat shock protein 90 binding to TGFbeta receptor I participates in TGFbeta-mediated collagen production in myocardial fibroblasts. Cell Signal 28:1563–1579. https://doi.org/10.1016/j.cellsig.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  35. Parameswaran S, Sharma RK (2015) Expression of calcineurin, calpastatin and heat shock proteins during ischemia and reperfusion. Biochem Biophys Rep 4:207–214. https://doi.org/10.1016/j.bbrep.2015.09.016

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nair SP, Sharma RK (2019) Effect of ischemia and reperfusion on Ca2+ and calmodulin-regulated proteins in primary murine cardiac non-myocytes. J Mol Biol Ther 1:72–79

    Google Scholar 

  37. Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239:1573–1584. https://doi.org/10.1002/dvdy.22280

    Article  CAS  PubMed  Google Scholar 

  38. Mayer DC, Leinwand LA (1997) Sarcomeric gene expression and contractility in myofibroblasts. J Cell Biol 139:1477–1484. https://doi.org/10.1083/jcb.139.6.1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foo B, Williamson B, Young JC, Lukacs G, Shrier A (2016) hERG quality control and the long QT syndrome. J Physiol 594:2469–2481. https://doi.org/10.1113/JP270531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ficker E, Dennis AT, Wang L, Brown AM (2003) Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG. Circ Res 92:e87–e100. https://doi.org/10.1161/01.RES.0000079028.31393.15

    Article  CAS  PubMed  Google Scholar 

  41. Someren JS, Faber LE, Klein JD, Tumlin JA (1999) Heat shock proteins 70 and 90 increase calcineurin activity in vitro through calmodulin-dependent and independent mechanisms. Biochem Biophys Res Commun 260:619–625. https://doi.org/10.1006/bbrc.1999.0800

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Mr. F. M. Boyd for technical assistance with flow cytometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Sharma.

Ethics declarations

Conflict of interest

All the experiments were approved by the institutional ethics committee prior to experimentation. The authors declare neither conflict of interest nor any competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, S.P., Sharma, R.K. Heat shock proteins and their expression in primary murine cardiac cell populations during ischemia and reperfusion. Mol Cell Biochem 464, 21–26 (2020). https://doi.org/10.1007/s11010-019-03645-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03645-1

Keywords

Navigation