Skip to main content
Log in

Novel Mannich base 3FB3FA8H induces apoptosis by upregulating P53 pathway in neuroblastoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

P53 plays an important role in maintaining genetic stability and development of resistance against tumors. Dysregulation of P53 gene is one of the key factors contributing to the etiology of neuroblastoma which causes cells to evade apoptosis. Activating P53 pathway can be a therapeutic alternative to the currently available medicinal strategies. Mannich bases have been known to possess various biological activities including the anticancer activity. In this study, we have targeted the P53 pathway by novel Mannich base (3FB3FA8H) which can be a future prospect to cure neuroblastoma. 3FB3FA8H has shown modulation of P53 pathway leading to apoptosis of neuroblastoma cells. Mitochondrial membrane permeability is also increased by 3FB3FA8H which may be a consequence of P53 pathway modulation. 3FB3FA8H increases the mRNA levels of P53 leading to activation of BAX. Inclining BAX/BCL2 ratio towards apoptotic BAX leads to cleavage of caspase 3, ultimately, causing apoptosis. Series of experiments provide the evidence that Mannich base 3FB3FA8H leads to P53-mediated apoptosis. Inducing apoptosis by this mechanism could be of central importance in reducing tumor burden which can be a good prospect for neuroblastoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roman G (2015) Mannich bases in medicinal chemistry and drug design. Eur J Med Chem 89:743–816. https://doi.org/10.1016/j.ejmech.2014.10.076

    Article  CAS  PubMed  Google Scholar 

  2. Bala S, Sharma N, Kajal A, Kambo S, Saini V (2014) Mannich bases: an important pharmacophore in present scenario. Int J Med Chem 2014:191072. https://doi.org/10.1155/2014/191072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mahal K, Ahmad A, Schmitt F, Lockhauserbäumer J, Starz K, Pradhan R, Padhye S, Sarkar FH, Koko WS, Schobert R, Ersfeld K, Biersack B (2017) Improved anticancer and antiparasitic activity of new lawsone Mannich bases. Eur J Med Chem 126:421–423. https://doi.org/10.1016/j.ejmech.2016.11.043

    Article  CAS  PubMed  Google Scholar 

  4. Gul M, Gul HI, Hänninen O (2002) Effects of Mannich bases on cellular glutathione and related enzymes of Jurkat cells in culture conditions. Toxicol In Vitro 16(2):107–112. https://doi.org/10.1016/s0887-2333(01)00115-1

    Article  CAS  PubMed  Google Scholar 

  5. Oliveri V, Vecchio G (2016) 8-Hydroxyquinoline in medicinal chemistry: a structural perspective. Eur J Med Chem 120:252–274. https://doi.org/10.1016/j.ejmech.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  6. Shaw YA, Chang CY, Hsu MY, Lu PJ, Yang CN, Chen HL, Lo CW, Shiau CW, Chern MK (2010) Synthesis and structure-activity relationship study of 8-hydroxyquinoline-derived Mannich bases as anticancer agents. Eur J Med Chem 45:2860–2867. https://doi.org/10.1016/j.ejmech.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  7. Andrew MD (2012) Neuroblastoma. Semin Pediatr Surg 21(1):2–14. https://doi.org/10.1053/j.sempedsurg.2011.10.009

    Article  Google Scholar 

  8. Schwab M, Westermann F, Hero B, Berthold F (2003) Neuroblastoma: biology and molecular and chromosomal pathology. Lancet Oncol 4(8):472–480. https://doi.org/10.1016/s1470-2045(03)01166-5

    Article  CAS  PubMed  Google Scholar 

  9. Park JR, Eggert A, Caron H (2008) Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am 55(1):97–120. https://doi.org/10.1016/j.pcl.2007.10.014

    Article  PubMed  Google Scholar 

  10. Hou L, Ju C, Zhang J, Song J, Ge Y, Yue W (2008) Antitumor effects of Isatin on human neuroblastoma cell line (SH-SY5Y) and the related mechanism. Eur J Pharmacol 589(1):27–31. https://doi.org/10.1016/j.ejphar.2008.04.061

    Article  CAS  PubMed  Google Scholar 

  11. Castleberry RP (1997) Neuroblastoma. Eur J Cancer 33(9):1430–1437. https://doi.org/10.1016/s0959-8049(97)00308-0

    Article  CAS  PubMed  Google Scholar 

  12. American cancer Society (2017) Chemotherapy for neuroblastoma. https://www.cancer.org/cancer/neuroblastoma/treating/chemotherapy.html. Accessed 27 Jun 2017

  13. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  14. Lockshin RA, Zakeri Z (2007) Cell death in health and disease. J Cell Mol Med 11(6):1214–1224. https://doi.org/10.1111/j.1582-4934.2007.00150.x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hannun YA (1997) Apoptosis and the dilemma of cancer chemotherapy. Blood 89(6):1845–1853

    Article  CAS  Google Scholar 

  16. Gerschenson LE, Rotello RJ (1992) Apoptosis: a different type of cell death. FASEB J 6(7):2450–2455. https://doi.org/10.1096/fasebj.6.7.1563596

    Article  CAS  PubMed  Google Scholar 

  17. Kastan MB (2007) Wild-type p53: tumors can't stand it. Cell 128(5):837–840. https://doi.org/10.1016/j.cell.2007.02.022

    Article  CAS  PubMed  Google Scholar 

  18. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431. https://doi.org/10.1016/j.cell.2009.04.037

    Article  CAS  PubMed  Google Scholar 

  19. Ruiz-Perez VL et al (1999) ATP2A2 Mutations in Darier's disease: variant cutaneous phenotypes are associated with missense mutations, but neuropsychiatry features are independent of mutation class. Hum Mol Genet 8(9):1621–1630. https://doi.org/10.1093/hmg/8.9.1621

    Article  CAS  PubMed  Google Scholar 

  20. Laptenko O, Prives C (2006) Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13(6):951–961. https://doi.org/10.1038/sj.cdd.4401916

    Article  CAS  PubMed  Google Scholar 

  21. Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622. https://doi.org/10.1016/j.cell.2009.04.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283. https://doi.org/10.1038/nrm2147

    Article  CAS  PubMed  Google Scholar 

  23. Balint E, Vousden KH (2001) Activation and activities of the p53 tumour suppressor protein. Br J Cancer 85(12):1813–1823. https://doi.org/10.1054/bjoc.2001.2128

    Article  CAS  PubMed Central  Google Scholar 

  24. Bouchet BP, de Fromentel CC, Puisieux A, Galmarini CM (2006) p53 as a target for anti-cancer drug development. Crit Rev Oncol Hematol 58(3):190–207. https://doi.org/10.1016/j.critrevonc.2005.10.005

    Article  PubMed  Google Scholar 

  25. Lewis JM, Truong TN, Schwartz MA (2002) Integrins regulate the apoptotic response to DNA damage through modulation of p53. Proc Natl Acad Sci USA 99(6):3627–3632. https://doi.org/10.1073/pnas.062698499

    Article  CAS  PubMed  Google Scholar 

  26. Rich T, Allen RL, Wyllie AH (2000) Defying death after DNA damage. Nature 407(6805):777–783. https://doi.org/10.1038/35037717

    Article  CAS  PubMed  Google Scholar 

  27. Burns TF, El-Deiry WS (1999) The p53 pathway and apoptosis. J Cell Physiol 181(2):231–239. https://doi.org/10.1002/(sici)1097-4652(199911)181:2%3C231:aid-jcp5%3E3.0.co;2-l

    Article  CAS  PubMed  Google Scholar 

  28. Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis-the p53 network. J Cell Sci 116(20):4077–4085. https://doi.org/10.1242/jcs.00739

    Article  CAS  PubMed  Google Scholar 

  29. Toshiyuki M, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80(2):293–299. https://doi.org/10.1016/0092-8674(95)90412-3

    Article  Google Scholar 

  30. Li R, Hannon GJ, Beach D, Stillman B (1996) Subcellular distribution of p21 and PCNA in normal and repair-deficient cells following DNA damage. Curr Biol 6(2):189–199. https://doi.org/10.1016/s0960-9822(02)00452-9

    Article  CAS  PubMed  Google Scholar 

  31. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119(2):203–210. https://doi.org/10.1016/0022-1759(89)90397-9

    Article  CAS  PubMed  Google Scholar 

  32. Hanif F, Perveen K, Jawed H, Ahmed A, Malhi SM, Jamall S, Simjee SU (2014) N-(2-Hydroxyphenyl) acetamide (NA-2) and temozolomide synergistically induce apoptosis in human glioblastoma cell line U87. Cancer Cell Int 14(1):133. https://doi.org/10.1186/s12935-014-0133-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DeCoster MA (2007) The nuclear factor (NAF): a measure for cell apoptosis using microscopy and image analysis. In: Modern research and educational topics in microscopy, pp 378–384

  34. Susin SA et al (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192(4):571–580. https://doi.org/10.1084/jem.192.4.571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bron D, Mark A (2004) Quantification of sPLA2-induced early and late apoptosis changes in neuronal cell cultures using combined TUNEL and DAPI staining. Brain Res Protoc 13:144–150. https://doi.org/10.1016/j.brainresprot.2004.04.001

    Article  CAS  Google Scholar 

  36. Li PF, Dietz R, Von Harsdorf R (1999) p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 18(21):6027–6036. https://doi.org/10.1093/emboj/18.21.6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257. https://doi.org/10.1038/bjc.1972.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Faizi S, Saleem R, Siddiqui BS, Gilani SS et al (1993) Mannich reaction of 8-hydroxyquinoline (oxine): potential antifungal and analgesic agents. Proc Pak Acad Sci 30(4):231–246

    CAS  Google Scholar 

  39. Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H (2016) Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem Rev 116:422–518. https://doi.org/10.1021/acs.chemrev.5b00392

    Article  CAS  PubMed  Google Scholar 

  40. Pati HN, Das U, Sharma RK, Dimmock JR (2007) Cytotoxic thiol alkylators. Mini-Rev. Med Chem 7(2):131–139. https://doi.org/10.2174/138955707779802642

    Article  CAS  Google Scholar 

  41. Rainwater R, Parks D, Anderson ME, Tegtmeyer P, Mann K (1995) Role of cysteine residues in regulation of p53 function. Mol Cell Biol 15(7):3892–3903. https://doi.org/10.1128/mcb.15.7.3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giaccia AJ, Kastan MB (1998) The complexity of P53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983. https://doi.org/10.1101/gad.12.19.2973

    Article  CAS  PubMed  Google Scholar 

  43. Lohrum MA, Vousden KH (1999) Regulation and activation of P53 and its family members. Cell Death Differ 6:1162–1168. https://doi.org/10.1038/sj.cdd.4400625

    Article  CAS  PubMed  Google Scholar 

  44. Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10(9):1054–1072. https://doi.org/10.1101/gad.10.9.1054

    Article  CAS  PubMed  Google Scholar 

  45. Liontas A, Yeger H (2004) Curcumin and resveratrol induce apoptosis and nuclear translocation and activation of p53 in human neuroblastoma. Anticancer Res 24(2B):987–998

    CAS  PubMed  Google Scholar 

  46. Nikolaev AY, Li M, Puskas N, Qin J, Gu W (2003) Parc: a cytoplasmic anchor for p53. Cell 112(1):29–40. https://doi.org/10.1016/s0092-8674(02)01255-2

    Article  CAS  PubMed  Google Scholar 

  47. Kobayashi T, Sawa H, Morikawa J, Zhang W, Shiku H (2000) Bax induction activates apoptotic cascade via mitochondrial cytochrome c release and Bax overexpression enhances apoptosis induced by chemotherapeutic agents in DLD-1 colon cancer cells. Cancer Sci 91(12):1264–1268. https://doi.org/10.1111/j.1349-7006.2000.tb00913.x

    Article  CAS  Google Scholar 

  48. Oltval ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 74(4):609–619. https://doi.org/10.1016/0092-8674(93)90509-o

    Article  Google Scholar 

  49. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. https://doi.org/10.1038/35042675

    Article  CAS  PubMed  Google Scholar 

  50. Moran LK, Gutteridge J, Quinlan GJ (2001) Thiols in cellular redox signalling and control. Curr Med Chem 8(7):763–772. https://doi.org/10.2174/0929867013372904

    Article  CAS  PubMed  Google Scholar 

  51. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12(5):835–840. https://doi.org/10.1007/s10495-006-0525-7

    Article  CAS  PubMed  Google Scholar 

  52. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149(7):1536–1548. https://doi.org/10.1016/j.cell.2012.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cui H, Schroering A, Ding HF (2002) Mol Cancer Ther 1(9):679–686

    CAS  PubMed  Google Scholar 

  54. Laverdière C, Liu Q, Yasui Y, Nathan PC, Gurney JG, Stovall M, Sklar CA (2009) Long-term outcomes in survivors of neuroblastoma: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 101(16):1131–1140. https://doi.org/10.1093/jnci/djp230

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabana U. Simjee.

Ethics declarations

Conflict of interest

There is no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S.S., Faizi, S., Rafi, K. et al. Novel Mannich base 3FB3FA8H induces apoptosis by upregulating P53 pathway in neuroblastoma cells. Mol Cell Biochem 471, 29–39 (2020). https://doi.org/10.1007/s11010-020-03755-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03755-1

Keywords

Navigation